Malignant hyperthermia syndrome--evidence for denervation changes in human skeletal muscle. 1976

J J Heffron, and H Isaacs

The presence of denervation-like changes and abnormal mitochondria in the muscle of carriers of the malignant hyperthermia syndrome suggest a neuropathic basis for the human syndrome. A defect in mitochondrial ATP synthesis resulting from denervation, and potentiated by some general anaesthetics, may be the primary muscle fibre lesion in the human malignant hyperthermic syndrome.

UI MeSH Term Description Entries
D008305 Malignant Hyperthermia Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia. Hyperpyrexia, Malignant,Hyperthermia, Malignant,Malignant Hyperpyrexia,Anesthesia Related Hyperthermia,Hyperthermia of Anesthesia,Anesthesia Hyperthermia,Hyperthermia, Anesthesia Related,Malignant Hyperpyrexias
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009468 Neuromuscular Diseases A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA. Amyotonia Congenita,Oppenheim Disease,Cramp-Fasciculation Syndrome,Fasciculation-Cramp Syndrome, Benign,Foley-Denny-Brown Syndrome,Oppenheim's Disease,Benign Fasciculation-Cramp Syndrome,Benign Fasciculation-Cramp Syndromes,Cramp Fasciculation Syndrome,Cramp-Fasciculation Syndromes,Fasciculation Cramp Syndrome, Benign,Fasciculation-Cramp Syndromes, Benign,Foley Denny Brown Syndrome,Neuromuscular Disease,Oppenheims Disease,Syndrome, Cramp-Fasciculation,Syndrome, Foley-Denny-Brown,Syndromes, Cramp-Fasciculation
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

J J Heffron, and H Isaacs
June 1984, Biochemical Society transactions,
J J Heffron, and H Isaacs
March 1987, Biochimica et biophysica acta,
J J Heffron, and H Isaacs
February 1974, Acta physiologica Scandinavica,
J J Heffron, and H Isaacs
July 1973, The Journal of pathology,
J J Heffron, and H Isaacs
August 2010, The Journal of biological chemistry,
J J Heffron, and H Isaacs
July 1972, Bollettino della Societa italiana di biologia sperimentale,
J J Heffron, and H Isaacs
February 2000, Muscle & nerve,
J J Heffron, and H Isaacs
November 1981, The Journal of clinical investigation,
J J Heffron, and H Isaacs
September 1979, European journal of pharmacology,
Copied contents to your clipboard!