Voltage-gated potassium current and resonance in the toadfish saccular hair cell. 1992

A Steinacker, and A Romero
Institute of Neurobiology, University of Puerto Rico, San Juan 00901.

Resonance of the membrane potential in response to a perturbing current has been demonstrated in sensory hair cells of many acoustico-lateralis systems and modelled as the result of the interaction of passive membrane properties and the magnitude and kinetics of activation and deactivation of an outward calcium-activated potassium current (IKCa) and an inward calcium current (ICa). However, the majority of the hair cells of the toadfish saccule have, in addition to IKCa, a voltage-gated potassium current (IK) active in the same membrane potential range as IKCa but with considerably slower activation and deactivation kinetics. Additionally, some of these cells have an A current (IA). In the present work, the resonance of cells with these three outward potassium currents were compared with those from cells containing only IKCa. Hair cells with only IKCa produced a high-quality factor (Q) resonance with symmetrical ringing at current onset and termination. In many cells having the IK, resonance could be evoked as a high Q ringing only at the onset of the current pulse. The resonance at command onset was dependent on the presence of IKCa and could be converted into a spike by blocking the IKCa with TEA. Some hair cells with IKCa and IK produced spikes rather than resonance at all holding potentials tested. This spiking was seen in cells with low levels of IKCa or slowly activating IKCa and with cells with IA. The presence of cells with such different response modes implies a difference between hair cells in their role in sensory coding.

UI MeSH Term Description Entries
D008267 Acoustic Maculae The sensory areas on the vertical wall of the saccule and in the floor of the utricle. The hair cells in the maculae are innervated by fibers of the VESTIBULAR NERVE. Maculae, Acoustic,Macula, Acoustic,Acoustic Macula,Acoustic Maculas,Maculas, Acoustic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012444 Saccule and Utricle Two membranous sacs within the vestibular labyrinth of the INNER EAR. The saccule communicates with COCHLEAR DUCT through the ductus reuniens, and communicates with utricle through the utriculosaccular duct from which the ENDOLYMPHATIC DUCT arises. The utricle and saccule have sensory areas (acoustic maculae) which are innervated by the VESTIBULAR NERVE. Otolithic Organs,Utricle,Saccule,Organ, Otolithic,Otolithic Organ,Saccules,Utricle and Saccule,Utricles
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Steinacker, and A Romero
December 2003, Journal of neurophysiology,
A Steinacker, and A Romero
October 1992, The Biological bulletin,
A Steinacker, and A Romero
October 2004, Physiology (Bethesda, Md.),
A Steinacker, and A Romero
September 1988, Hearing research,
A Steinacker, and A Romero
June 2010, Nihon rinsho. Japanese journal of clinical medicine,
A Steinacker, and A Romero
January 1993, Zhonghua er bi yan hou ke za zhi,
A Steinacker, and A Romero
January 2020, Frontiers in cell and developmental biology,
A Steinacker, and A Romero
April 2018, Brain and nerve = Shinkei kenkyu no shinpo,
Copied contents to your clipboard!