Differences in neuronal and glial cell phenotypic expression in neuron-glia cocultures: influence of glia-conditioned media and living glial cell substrata. 1992

K Lee, and S Kentroti, and A Vernadakis
Department of Psychiatry, University of Colorado School of Medicine, Denver 80262.

Neuron-glia cocultures were prepared using, as a source for glial cells, either C6 glia (2B clone) of early (2B23) or late (2B111) passages or advanced passages of glial cells derived from primary cultures prepared from aged mouse cerebral hemispheres (MACH). Six-day-old chick embryo cerebral hemispheres (E6CH) were the source of neuron-enriched cultures. Glutamine synthetase (GS) activity was used as a marker for astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity was used as a marker for oligodendrocytes. GS activity was markedly enhanced in cocultures of E6CH neurons and 2B23 glioblastic cells, whereas GS activity was reduced in cocultures of E6CH neurons and 2B111 astrocytic glia. In contrast, CNP activity was enhanced in cocultures of C6 glial cells with E6CH neurons. Glial cells from aged mouse brain did not respond to coculturing with E6CH neurons. It appears from these findings that neuronal input enhances the differentiation of glioblastic cells to either astrocytic or oligodendrocytic expression, whereas it decreases the activity of committed astrocytes. In contrast, glial cells from aged mouse brain do not respond to neuronal input. Choline acetyltransferase (ChAT) activity, a marker for cholinergic neurons, was enhanced only when E6CH cultures were grown in conditioned medium (CM) from 2B23 glioblastic cells. In contrast, ChAT activity was markedly diminished when E6CH neurons were cocultured with MACH glial cells but not when grown in CM from MACH glial cells. Thus, humoral factors from immature glial cells appear to enhance cholinergic neuronal phenotypic expression whereas cell-cell membrane contacts with aged glial cells diminish cholinergic phenotypic expression. The findings present supportive evidence that neuron-glia interrelationships are age dependent.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline

Related Publications

K Lee, and S Kentroti, and A Vernadakis
October 1984, Neurochemical research,
K Lee, and S Kentroti, and A Vernadakis
May 2022, BioEssays : news and reviews in molecular, cellular and developmental biology,
K Lee, and S Kentroti, and A Vernadakis
June 2003, Journal of neuroscience research,
K Lee, and S Kentroti, and A Vernadakis
January 1984, Advances in experimental medicine and biology,
K Lee, and S Kentroti, and A Vernadakis
April 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Lee, and S Kentroti, and A Vernadakis
March 2003, Neuron,
K Lee, and S Kentroti, and A Vernadakis
January 1984, Advances in experimental medicine and biology,
K Lee, and S Kentroti, and A Vernadakis
January 2005, Cell calcium,
K Lee, and S Kentroti, and A Vernadakis
January 1979, International review of neurobiology,
Copied contents to your clipboard!