Membrane properties of identified mesencephalic dopamine neurons in primary dissociated cell culture. 1992

L A Chiodo, and G Kapatos
Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201.

Dopamine (DA)-containing neurons in primary dissociated cell cultures derived from the embryonic mouse mesencephalon (day E13) were studied by histochemical and electrophysiological techniques. DA neurons exhibited two distinct morphologies, fusiform and multipolar, tended to reside in groups and organize dendrites into common fascicles. While these neurons expressed the cell-surface marker acetylcholinesterase, the presence of this enzyme could not be used to identify DA neurons unequivocally, since it was also observed in nondopaminergic cells. Neurons were therefore identified as DA by their distinct morphology, and this identification was validated with a double-labeling procedure that entailed the intracellular deposition of a fluorescent dye (Lucifer yellow or ethidium bromide), followed by processing for tyrosine hydroxylase immunocytochemistry. DA neurons identified in this manner were observed to have resting membrane potentials between -50 and -75 mV, input resistances of 50-360 M omega, and membrane time constants of 4.1-14.1 msec. Forty-seven percent of these cells displayed spontaneous activity that was irregular in nature and often contained bursts (burst length was between two and six action potentials). The DA neurons displayed a variety of ionic conductances, including (1) a Na+ conductance (gNa) that underlies the action potential, (2) Ca2+ conductances (gCa) that mediate the nonsomatic low- and high-threshold spikes observed, and (3) at least three K+ conductances (gK). Voltage-clamp analysis revealed several distinct transmembrane ionic currents, including (1) a large, rapidly inactivating tetrodotoxin-sensitive inward Na+ current (INa), (2) a 4-aminopyridine-sensitive, transient early outward K+ current that required a conditioning hyperpolarization of the membrane to be activated by a subsequent depolarization (A-current, IA), (3) a slowly developing inward current that was seen only after a conditioning hyperpolarization of the membrane and that was dependent on the presence of external Ca2+ ions (ICa), and (4) a late-onset, noninactivating K+ current. Between 25% and 54% of the late-onset K+ current was Ca(2+)-dependent and was not affected by tetraethylammonium ions. This current was termed IAHP. The remaining current was not sensitive to changes in the extracellular Ca2+ concentration but was blocked by external tetraethylammonium. This current was termed IK. The direct pressure application of DA (1-200 microM) onto the soma dose-dependently hyperpolarized these neurons; this effect was potentiated by the presence of the catecholamine reuptake blocker cocaine hydrochloride (10-200 microM). Under voltage-clamp conditions, DA was observed to increase IK significantly and had little effect on IAHP.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L A Chiodo, and G Kapatos
March 1998, Neuroscience research,
L A Chiodo, and G Kapatos
January 1996, Brain research bulletin,
L A Chiodo, and G Kapatos
December 1974, Brain research,
L A Chiodo, and G Kapatos
July 2008, Current protocols in neuroscience,
L A Chiodo, and G Kapatos
June 1993, Journal of neurophysiology,
Copied contents to your clipboard!