Formoterol and salbutamol inhibit bradykinin- and histamine-induced airway microvascular leakage in guinea-pig. 1992

C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
Laboratoire de Pharmacologie, Faculté de Médecine Paris-Ouest, France.

1. The effects of the beta 2-adrenoceptor agonists, salbutamol and formoterol, on the increase of microvascular permeability induced by histamine or bradykinin in guinea-pig airways have been studied in vivo. Extravasation of intravenously injected Evans blue dye was used as an index of permeability. The effects of salbutamol and formoterol on the increase in pulmonary airway resistance induced by histamine or bradykinin have also been studied. 2. The increase in pulmonary airway resistance induced by histamine or bradykinin was totally inhibited by salbutamol and formoterol. The ED50 of the two mediators were 0.59 +/- 0.21 (n = 5) and 0.20 +/- 0.14 (n = 5) micrograms kg-1 respectively for salbutamol, and 0.13 +/- 0.12 (n = 6) and 0.02 +/- 0.01 (n = 6) micrograms kg-1 respectively for formoterol. 3. Salbutamol (10 and 30 micrograms kg-1) and formoterol (1 and 10 micrograms kg-1) inhibited the increase of microvascular permeability induced by histamine (30 micrograms kg-1) in the guinea-pig airways. The inhibitory effect was predominant in the trachea and the main bronchi, with a maximum inhibition of 20 to 50%. The two drugs had little or no inhibitory effect on the other structures studied, viz. nasal mucosa, larynx, proximal and distal intrapulmonary airways. 4. Salbutamol and formoterol (1 and 10 micrograms kg-1) abolished the increase in microvascular permeability induced by bradykinin (0.3 micrograms kg-1). This inhibitory effect of two beta-adrenoceptor stimulants was predominant in the trachea and the nasal mucosa where it was observed with 1 microgram kg-1 of the beta-adrenoceptor agonists.In the main bronchi, and in the proximal and distal intrapulmonary airways, the effects of bradykinin were abolished by 10 pg kg- of formoterol and salbutamol.5. The effects of bradykinin, but not those of histamine, were significantly reduced (nasal mucosa, main bronchi and distal intrapulmonary airways) or abolished (trachea, proximal intrapulmonary airways) by morphine 10mgkg-1, i.v. These results suggest that an indirect effect, through non-adrenergic noncholinergic (NANC) nerves is involved in the action of bradykinin on the microvascular permeability.6. In conclusion, intravenously injected beta-adrenoceptor stimulants can inhibit, partially or totally, the increase of airways microvascular permeability induced by intravenous histamine or bradykinin. However, these effects require doses that are higher than those that inhibit the increase in pulmonary airway resistance induced by these mediators. As suggested by the results obtained with morphine, the higher efficacy of beta2-adrenoceptor agonists versus bradykinin may occur through activation of presynaptic receptors of the non-adrenergic non-cholinergic (NANC) nerves preventing release of inflammatory neuropeptides such as substance P and neurokinin A.

UI MeSH Term Description Entries
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000068759 Formoterol Fumarate An ADRENERGIC BETA-2 RECEPTOR AGONIST with a prolonged duration of action. It is used to manage ASTHMA and in the treatment of CHRONIC OBSTRUCTIVE PULMONARY DISEASE. 3-Formylamino-4-hydroxy-alpha-(N-1-methyl-2-p-methoxyphenethylaminomethyl)benzyl alcohol.hemifumarate,Arformoterol,BD 40A,Eformoterol,Foradil,Formoterol,Formoterol Fumarate, ((R*,R*)-(+-))-isomer,Formoterol, ((R*,R*)-(+-))-isomer,Oxis
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D000420 Albuterol A short-acting beta-2 adrenergic agonist that is primarily used as a bronchodilator agent to treat ASTHMA. Albuterol is prepared as a racemic mixture of R(-) and S(+) stereoisomers. The stereospecific preparation of R(-) isomer of albuterol is referred to as levalbuterol. Salbutamol,2-t-Butylamino-1-(4-hydroxy-3-hydroxy-3-hydroxymethyl)phenylethanol,Albuterol Sulfate,Proventil,Sultanol,Ventolin

Related Publications

C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
August 1993, European journal of pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
January 1991, European journal of pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
February 1991, Allergy,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
December 1993, The Journal of pharmacy and pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
April 1992, European journal of pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
March 1996, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
March 1994, European journal of pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
December 1995, The Journal of allergy and clinical immunology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
March 1992, European journal of pharmacology,
C Advenier, and Y Qian, and J D Koune, and M Molimard, and M L Candenas, and E Naline
February 1998, European journal of pharmacology,
Copied contents to your clipboard!