Cyclic AMP potentiates receptor-stimulated phosphoinositide hydrolysis in human neuroepithelioma cells. 1992

S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
Neuroscience Laboratory, University of Michigan, Ann Arbor 48104.

A stimulatory role for cAMP in the regulation of receptor-activated phosphoinositide hydrolysis has been examined in human SK-N-MCIXC and SK-N-MCIIE neuroepithelioma cells. The addition of optimal concentrations of oxotremorine-M, norepinephrine, endothelin-1, and ATP enhanced the release of inositol phosphates by 2-9-fold after activation of muscarinic, alpha 1-adrenergic, endothelin, and P2 nucleotide receptors, respectively. All combinations of these agonists elicited a release of inositol phosphates that was at least additive. However, the combined presence of oxotremorine-M and norepinephrine resulted in a phosphoinositide hydrolysis that was 30% greater than additive. This potentiation of inositol lipid hydrolysis resulted from an increased activity of the muscarinic receptor after the addition or norepinephrine and persisted after alpha 1-adrenergic receptor blockade. The enhancement of muscarinic receptor-stimulated inositol phosphate release could be quantitatively mimicked by inclusion of the beta-adrenergic agonist isoproterenol (EC50 approximately 0.1 microM), but not by alpha 1- or alpha 2-adrenergic agonists. Potentiation of oxotremorine-M-stimulated inositol lipid hydrolysis observed in the presence of either norepinephrine or isoproterenol was reduced in the absence of added Ca2+. Addition of either norepinephrine or isoproterenol to SK-N-MCIXC cells also resulted in a 16-fold increase in cAMP concentration. Although the cell-permeant 8-chloro-4-phenylthio-cAMP had a small inhibitory effect on basal inositol phosphate release, its inclusion resulted in a 19-31% enhancement of muscarinic, endothelin, ATP, and alpha 1-adrenergic receptor-stimulated phosphoinositide hydrolysis. We conclude 1) that, in SK-N-MCIXC cells, the addition of beta-adrenergic agonists selectively enhances muscarinic receptor-stimulated phosphoinositide hydrolysis through a cAMP-dependent process and 2) that the ability of exogenously added cAMP to enhance the activation of all four inositol lipid-linked receptors indicates that the effects of cAMP on inositol lipid hydrolysis are compartmentalized in these cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
September 1974, Nature,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
June 1991, Journal of neurochemistry,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
March 1992, Neuroscience letters,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
February 1992, Japanese journal of pharmacology,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
February 1995, Neuroreport,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
May 1992, Journal of neurochemistry,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
November 1992, Neuroscience letters,
S K Fisher, and E L McEwen, and S C Lovell, and R E Landon
July 1989, Investigative ophthalmology & visual science,
Copied contents to your clipboard!