Sulfhydryl group modification of sarcoplasmic reticulum membranes. 1976

A J Murphy

Modification of calcium-translocating sarcoplasmic reticulum membranes (SR) with 5,5'-dithiobis(2-nitrobenzoate) (Nbs2) reveals four classes (kinetic sets) of sulfhydryl groups. Of the 25 mol/1.5 X 10(5) G OF SR protein (i.e., containing 1 mol of ATPase protein) estimated in the presence of sodium dodecyl sulfate, 8 mol are unreactive, while 7, 8, and 2 mol display pseudo-first-order rate constants (k1) of 0.16, 0.68, and 8.3 min(-1), respectively (25 decrees C, pH 7.8, 4 MM Nbs2). Under these conditions, the Ca-ATPase activity is lost with k1 = 0.73 min(-1), whereas the Ca-independent ATPase activity is essentially unchanged. These results are little changed by the presence of Mg2+ or Ba2+ in the modification mixture, while Ca2+ or Sr2+ causes all 16-17 reactable sulfhydryls to be modified with k1 = 0.50 and 0.53 min(-1), respectively. The corresponding values for the loss of Ca-ATPase activity are 0.53 and 0.67 min(-1); this suggests that blocking of only one of the 16-17 SH groups inactivates the enzyme, i.e., that there is a single "essential" SH group. The midpoint of the transition between the Ca2+-free and Ca2+-modification patterns occurs at a free Ca2+ concentration of about 0.9 muM, implying that it is Ca2+ binding at the active sites (KD = 0.1 muM), rather than at the low-affinity nonspecific sites, that effects a conformation change in the ATPase protein (which contains greater than 90% of the cysteines). A calcium-induced conformation change is also suggested by increased ultraviolet absorbance spectrum of the purified ATPase protein upon calcium binding. If protein-lipid interaction is disrupted with deoxycholate or Triton X-100 (which does not destroy the Ca-ATPase activity and hence presumably leaves the tertiary structure of the ATPase protein largely intact), 95% of the sulfhydryls react with Nbs2 considerably faster; thus, at 2 mg/ml o- deoxycholate, 14 groups react with k1 greater than 20, 5 with k1 = 2.3, and 5 with k1 = 0.4 min(-1). These results suggest that the inaccessibility of SH groups in the absence of detergents is due to extensive interaction of the bilayer phospholipids with the ATPase protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

A J Murphy
July 1977, Biochimica et biophysica acta,
A J Murphy
June 1968, Biochimica et biophysica acta,
A J Murphy
August 1970, The Journal of general physiology,
A J Murphy
May 1971, Archives of biochemistry and biophysics,
A J Murphy
January 1988, Molecular and cellular biochemistry,
A J Murphy
September 1983, Biochimica et biophysica acta,
A J Murphy
April 1994, Biochemical and biophysical research communications,
A J Murphy
January 1976, Zeitschrift fur Naturforschung. Section C, Biosciences,
A J Murphy
January 1982, Annual review of physiology,
A J Murphy
November 1979, Journal of biochemistry,
Copied contents to your clipboard!