Glutamate-immunoreactive terminals synapse on primate spinothalamic tract cells. 1992

K N Westlund, and S M Carlton, and D Zhang, and W D Willis
Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555.

Glutamate has been shown to excite spinothalamic tract (STT) neurons and has been localized to primary afferent neurons, spinal cord projection neurons, and interneurons in the spinal cord dorsal horn. The likelihood that glutamate-immunoreactive (GLU-IR) terminals directly innervate STT neurons was investigated. For these studies three lamina IV or V STT cells in the lumbar spinal cords of three monkeys (Macaca fascicularis) were identified electrophysiologically and characterized. Two were identified as high threshold neurons and one as a wide dynamic range neuron. Following intracellular injection of the cells with HRP and reaction to give the cells a Golgi-like appearance, the tissues were processed for electron microscopy. Postembedding immunogold methods with antibodies specific for glutamate were used to identify GLU-IR terminals apposing the somata and dendrites of the STT neurons, including dendrites that extended into laminae IV and III. The GLU-IR terminals were numerous and constituted a mean of 46% of the population counted that appose the STT soma and 50% of the profiles apposing the dendrites. Fifty-four percent of the somatic and 50% of the dendritic surface length was contacted by GLU-IR terminals. Most terminals contained round clear vesicles and some contained a variable number of large dense core vesicles. For one of the three cells examined it was determined that 45% of the terminals apposing the soma were GLU-IR and 30% of the terminals were gamma aminobutyric acid-immunoreactive (GABA-IR). In an additional monkey, a lamina I cell retrogradely labeled from the ventral posterolateral nucleus of the thalamus was found to be ensheathed in glial processes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

K N Westlund, and S M Carlton, and D Zhang, and W D Willis
March 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
December 1981, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
February 1985, Journal of neurosurgery,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
December 1979, The Journal of comparative neurology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
March 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
February 1983, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
July 1984, Pain,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
May 1976, Journal of neurophysiology,
Copied contents to your clipboard!