Potentiation of 5-hydroxytryptamine-induced contraction in rat aorta by chlorpheniramine, citalopram and fluoxetine. 1992

C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
Department of Pharmacology, Marshall University School of Medicine, Huntington, WV 25755-9310.

This study examined the effects of chlorpheniramine, citalopram and fluoxetine on 5-hydroxytryptamine (5-HT)-induced contraction and 5-HT uptake in rat thoracic aortic rings in vitro. Chlorpheniramine and citalopram markedly potentiated 5-HT-induced contraction. Potentiation by fluoxetine was less pronounced. Chlorpheniramine (0.01-1 microM) and citalopram (0.1-1 microM) induced concentration-dependent parallel shifts to the left of the 5-HT concentration-response curves. The potentiation by chlorpheniramine was selective as chlorpheniramine (1 microM) did not potentiate phenylephrine-induced contraction. The potentiation did not depend upon the presence of endothelium, and was not related to H1 receptor antagonism as diphenhydramine and pyrilamine (1 microM) did not similarly enhance 5-HT-induced contractions. Whereas cocaine (1-10 microM) similarly potentiated 5-HT-induced contraction, imipramine (1-10 microM) inhibited, rather than enhanced, contraction elicited by 5-HT. In the presence of 10 microM cocaine, maximally effective concentrations of chlorpheniramine (1 microM) or citalopram (100 nM) did not induce any additional potentiation of 5-HT-induced contraction. Cooling (4 degrees C) markedly inhibited uptake of [3H]5-HT in rings with and without endothelium. Although less marked, imipramine (10 microM), cocaine (1 microM), chlorpheniramine (1 microM) and citalopram (100 nM) inhibited [3H]5-HT uptake in endothelium-intact and endothelium-denuded rings. Fluoxetine also inhibited [3H]5-HT uptake, but the inhibition was only statistically significant in endothelium-intact rings. The monoamine oxidase (MAO) inhibitor, pargyline (10-100 microM), did not significantly affect 5-HT-induced contraction. The results demonstrate that chlorpheniramine, citalopram and to a lesser extent, fluoxetine potentiate 5-HT-induced contraction in rat aorta in which neuronal 5-HT uptake is negligible. The data are consistent with inhibition of non-neuronal 5-HT uptake as at least one mechanism responsible for potentiation of 5-HT-induced contraction in rat aorta by chlorpheniramine, citalopram and fluoxetine.

UI MeSH Term Description Entries
D007099 Imipramine The prototypical tricyclic antidepressant. It has been used in major depression, dysthymia, bipolar depression, attention-deficit disorders, agoraphobia, and panic disorders. It has less sedative effect than some other members of this therapeutic group. Imidobenzyle,Imizin,4,4'-Methylenebis(3-hydroxy-2-naphthoic acid)-3-(10,11-dihydro-5H-dibenzo(b,f)azepin-5-yl)-N,N-dimethyl-1-propanamine (1:2),Imipramine Hydrochloride,Imipramine Monohydrochloride,Imipramine Pamoate,Janimine,Melipramine,Norchlorimipramine,Pryleugan,Tofranil
D008297 Male Males
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D002744 Chlorpheniramine A histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than PROMETHAZINE. Chlorphenamine,Chlorprophenpyridamine,Aller-Chlor,Antihistaminico Llorens,Chlo-Amine,Chlor-100,Chlor-Trimeton,Chlor-Tripolon,Chlorpheniramine Maleate,Chlorpheniramine Tannate,Chlorpro,Chlorspan 12,Chlortab-4,Cloro-Trimeton,Efidac 24,Kloromin,Piriton,Teldrin,Maleate, Chlorpheniramine,Tannate, Chlorpheniramine
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D006634 Histamine H1 Antagonists Drugs that selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Included here are the classical antihistaminics that antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. The effects of blocking central nervous system H1 receptors are not as well understood. Antihistamines, Classical,Antihistaminics, Classical,Antihistaminics, H1,Histamine H1 Antagonist,Histamine H1 Receptor Antagonist,Histamine H1 Receptor Antagonists,Histamine H1 Receptor Blockaders,Antagonists, Histamine H1,Antagonists, Histamine H1 Receptor,Antihistamines, Sedating,Blockaders, Histamine H1 Receptor,First Generation H1 Antagonists,H1 Receptor Blockaders,Histamine H1 Blockers,Receptor Blockaders, H1,Antagonist, Histamine H1,Classical Antihistamines,Classical Antihistaminics,H1 Antagonist, Histamine,H1 Antagonists, Histamine,H1 Antihistaminics,Sedating Antihistamines
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions

Related Publications

C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
March 1984, Il Farmaco; edizione scientifica,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
November 2007, The Journal of pharmacology and experimental therapeutics,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
January 1992, Japanese journal of pharmacology,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
December 1991, British journal of pharmacology,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
August 2002, Life sciences,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
February 1995, Japanese circulation journal,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
October 1993, European journal of pharmacology,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
January 1998, Clinical and experimental pharmacology & physiology,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
March 1971, Biochemical pharmacology,
C A Gruetter, and S M Lemke, and D K Anestis, and J L Szarek, and M A Valentovic
December 1995, Pulmonary pharmacology,
Copied contents to your clipboard!