Influences of dopamine receptors on chewing behaviour in rats. 1992

M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
Department of Pharmacology, Medical Faculty, Tehran University, Iran.

1. Intraperitoneal (i.p.) injection of different doses of pilocarpine induced purposeless chewing in rats. Physostigmine (i.p.), but not neostigmine (i.p.) also induced chewing behaviour. 2. Subcutaneous (s.c.) pretreatment of animals with the D-1 receptor blocker SCH 23390 decreased the number of chews induced by pilocarpine. 3. The D-2 dopamine antagonist sulpiride (i.p.) and anticholinergic atropine (i.p.) pretreatment also decreased the frequency of chews induced by the drug. 4. The response induced by pilocarpine (1 mg/kg i.p.) also was dose-dependently decreased in animals pretreated with apomorphine (0.25-1 mg/kg s.c.). 5. Administration of low doses of apomorphine (s.c.) also induced chewing, which was decreased with increasing the doses of the drug. 6. Chewing-induced by apomorphine was decreased by sulpiride or atropine and increased by SCH 23390 pretreatment. 7. Single administration of D-2 dopamine agonist bromocriptine also showed a slight but significant purposeless chewing, which was decreased by sulpiride pretreatment. 8. Single administration of D-2 agonist quinpirole, D-1 agonist SKF 38393 or D-1 antagonist SCH 23390, but not sulpiride caused a slight chewing. 9. It may be concluded that D-1 or D-2 activation exert opposite influences on chewing behaviour in rats, although to prove this effect more elucidation is needed.

UI MeSH Term Description Entries
D008297 Male Males
D008409 Mastication The act and process of chewing and grinding food in the mouth. Chewing
D010862 Pilocarpine A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. Isopilocarpine,Isoptocarpine,Ocusert,Pilocarpine Hydrochloride,Pilocarpine Mononitrate, (3S-cis)-Isomer,Pilocarpine Nitrate,Pilocarpine, Monohydrochloride, (3S-cis)-Isomer,Salagen,Hydrochloride, Pilocarpine,Nitrate, Pilocarpine
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
July 1976, British journal of pharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
October 1983, European journal of pharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
October 1996, Behavioural pharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
February 2003, Psychopharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
October 1985, European journal of pharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
March 2008, Neuropharmacology,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
January 1991, Therapie,
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
January 1995, Journal of psychopharmacology (Oxford, England),
M R Zarrindast, and T Moini-Zanjani, and H Manaheji, and F Fathi
November 1985, Bulletin of environmental contamination and toxicology,
Copied contents to your clipboard!