Linkage analysis of GLUT1 (HepG2) and GLUT2 (liver/islet) genes in familial NIDDM. 1992

S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
Department of Internal Medicine, Veterans Affairs Medical Center, Salt Lake City, Utah 84148.

Familial NIDDM probably results from combined inherited defects of insulin secretion and action. Members of the facilitative glucose transporter family are strong candidates for both defects, and RFLPs for both GLUT1 (erythrocyte) and GLUT2 (liver/islet) genes have been associated with NIDDM in some populations. To test the hypothesis that GLUT1 and GLUT2 mutations contribute to the inherited predisposition to NIDDM, we examined linkage of these loci with NIDDM in 18 large Utah white pedigrees (two and three generation) ascertained for > or = 2 NIDDM siblings. We used two RFLPs detected with Xba1 and Stu1 for the GLUT1 transporter. For the GLUT2 (liver/beta-cell) transporter gene, we used an RFLP detected with EcoR1 and a highly polymorphic (6-allele) dinucleotide (microsatellite) repeat. Analysis was performed with the MLINK program of the LINKAGE package. We tested four models for each locus: dominant and recessive, with IGT alternately considered as unknown affection status, or affected if IGT was diagnosed < or = 45 yr of age and unknown if > 45 yr. Disease gene frequencies were chosen to give approximate disease prevalence in American whites (q = 0.03, dominant; q = 0.25, recessive). Linkage of GLUT1 and NIDDM was strongly and significantly rejected under all models, with total (pooled) LOD scores of -5.7 to -8.9, indicating > 500,000:1 odds against linkage. Pooled LOD scores were significantly negative (< -2.0, or 100:1 odds against linkage) to a recombination fraction of > 5%. No heterogeneity was apparent. Analysis of GLUT2 gave similar results, with LOD scores of < -4.0 under each model, indicating at least 10,000:1 odds against linkage.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008126 Lod Score The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds." Lod Scores,Score, Lod,Scores, Lod
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical

Related Publications

S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
May 1992, Diabetes,
S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
December 1995, Diabetes,
S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
September 1997, Diabetologia,
S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
December 1990, Diabetes,
S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
September 1999, Neurogenetics,
S C Elbein, and M D Hoffman, and A Matsutani, and M A Permutt
May 1988, Diabetes,
Copied contents to your clipboard!