Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. 1992

Y Tamura, and Y Sato, and A Akaike, and H Shiomi
2nd Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Japan.

The protective effects of cholecystokinin (CCK) against glutamate-induced cytotoxicity were examined using cultured neurons obtained from the rat cerebral cortex. Cell viability was significantly reduced when the cultures were briefly exposed to glutamate or N-methyl-D-aspartate (NMDA) and then incubated with normal medium for 60 min. A 60-min exposure to kainate also reduced cell viability. CCK protected cortical neurons against glutamate-, NMDA- and kainate-induced cytotoxicity. Glutamate- and NMDA-induced cytotoxicity was also reduced by N omega-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor. However, CCK did not prevent the cytotoxic effects of sodium nitroprusside (SNP) which spontaneously releases NO. Moreover, CCK did not affect NMDA-induced Ca2+ influx measured with rhod-2, a fluorescent Ca2+ indicator. Therefore, release of a NO-like factor from the cerebral cortex was assayed using the thoracic artery in vitro. When the artery was incubated with minced cerebral tissues, glutamate elicited marked relaxation. SNP also elicited relaxation of the smooth muscle. CCK inhibited glutamate-induced relaxation but did not affect that induced by SNP. These results indicate that CCK prevents NMDA receptor-mediated cytotoxicity without reducing the Ca2+ influx. It is suggested that CCK inhibits NO-formation triggered by NMDA receptor activation.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002108 Ceruletide A specific decapeptide obtained from the skin of Hila caerulea, an Australian amphibian. Caerulein is similar in action and composition to CHOLECYSTOKININ. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction. Caerulein,Cerulein,Ceruletid,FI-6934,Takus,FI 6934,FI6934
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

Y Tamura, and Y Sato, and A Akaike, and H Shiomi
March 1998, Japanese journal of pharmacology,
Y Tamura, and Y Sato, and A Akaike, and H Shiomi
August 2007, Neuroscience letters,
Y Tamura, and Y Sato, and A Akaike, and H Shiomi
October 1994, Journal of neurosurgical anesthesiology,
Y Tamura, and Y Sato, and A Akaike, and H Shiomi
November 1995, Journal of neurochemistry,
Y Tamura, and Y Sato, and A Akaike, and H Shiomi
November 2008, Journal of biomedical science,
Y Tamura, and Y Sato, and A Akaike, and H Shiomi
October 1994, Neuroreport,
Copied contents to your clipboard!