The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. 1992

N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
Botanisches Institut, Ludwig-Maximilians-Universität, München, Germany.

Recombinant phages that encode the complete precursor polypeptide for the 22 kDa polypeptide associated with photosystem II have been serologically selected from two lambda gt11 expression libraries made from polyadenylated RNA of spinach seedlings. The cDNAs hybridize to a 1.3 kb RNA species. The precursor protein is comprised of 274 amino acid residues and carries an N-terminal transit peptide of probably 69 amino acid residues. The mature protein exhibits four predicted transmembrane segments and is shown to be an integral component of photosystem II originating in a single-copy gene. The unique characteristics of this protein are: (i) it is the result of a gene-internal duplication of an ancestor with two membrane spans, (ii) a striking resemblance to LHC I/II, CP24/CP29 apoproteins, and ELIPs, although it does not bind chlorophyll and is present in cyanobacteria, and, as these proteins, (iii) it integrates into the membrane with uncleaved routing signals that display remarkable resemblance to patterns found in bipartite transit peptides.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011498 Protein Precursors Precursors, Protein
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
December 1992, FEBS letters,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
September 1991, Plant molecular biology,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
December 1994, Biochimica et biophysica acta,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
April 1994, FEBS letters,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
August 2023, Plant physiology,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
December 2013, Photosynthesis research,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
December 2023, Journal of molecular biology,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
October 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
July 1987, Archives of biochemistry and biophysics,
N Wedel, and R Klein, and U Ljungberg, and B Andersson, and R G Herrmann
November 1989, The Journal of biological chemistry,
Copied contents to your clipboard!