Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. 1992

T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
Cellular Biochemistry and Biophysics Program, Rockefeller Research Laboratories, Sloan-Kettering Institute, New York, N.Y. 10021.

The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D018834 Chaperonin 60 A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein. Heat-Shock Proteins 60,hsp60 Family,GroEL Protein,GroEL Stress Protein,Heat-Shock Protein 60,hsp60 Protein,Heat Shock Protein 60,Heat Shock Proteins 60
D018835 Chaperonin 10 A group I chaperonin protein that forms a lid-like structure which encloses the non-polar cavity of the chaperonin complex. The protein was originally studied in BACTERIA where it is commonly referred to as GroES protein. Heat-Shock Proteins 10,hsp10 Family,GroES Protein,GroES Stress Protein,Heat-Shock Protein 10,hsp10 Protein,Heat Shock Protein 10,Heat Shock Proteins 10

Related Publications

T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
February 1996, Nature,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
October 1998, Proceedings of the National Academy of Sciences of the United States of America,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
May 2006, Chemical reviews,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
April 1998, Biochemistry. Biokhimiia,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
January 1995, Methods in molecular biology (Clifton, N.J.),
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
November 2008, The Journal of biological chemistry,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
January 2001, Advances in protein chemistry,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
January 2016, Trends in biochemical sciences,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
May 2009, International journal of molecular sciences,
T Langer, and G Pfeifer, and J Martin, and W Baumeister, and F U Hartl
October 2015, Biochemical and biophysical research communications,
Copied contents to your clipboard!