Origin of the ammonia used for mitochondrial citrulline synthesis as revealed by 13C-15N spin coupling patterns observed by 13C NMR. 1992

R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
Instituto de Investigaciones Biomédicas del CSIC, Madrid, Spain.

The sources of ammonia used by isolated, intact rat liver mitochondria in the production of citrulline have been investigated in situ using a novel methodology based on the analysis of 13C-15N heteronuclear couplings observed by 13C NMR. Isolated mitochondria from rat liver were incubated with ornithine, 13CO3H- and 15NH4Cl, using unlabeled glutamate or glutamine as alternative, intramitochondrial nitrogen donors. The production of (7-13C, 8-15N) or (7-13C, 8-14N) citrulline was determined in situ by 13C NMR and the relative proportions of 15N- and 14N-citrullines confirmed by high resolution 13C NMR analysis of the C-7 citrulline resonance observed in perchloric acid extracts prepared at the end of the incubations. The 15N fractional enrichment of the intramitochondrial NH3 pool was manipulated either by modifying the 15N enrichment of added 15NH4Cl, or by altering the concentration of the unlabeled nitrogen donors in the incubation medium. Fractional 15N enrichments measured in the N-8 nitrogen of the resulting (7-13C) citrulline closely paralleled those of the external 15NH4Cl with minor dilutions derived from the unlabeled nitrogen contribution from the alternative substrates. In the presence of 10 mM 15NH4Cl, 10 mM glutamate contributed 4% of the citrulline N-8 nitrogen. Under similar conditions, the contribution of nitrogen from 10 mM glutamine to N-8 citrulline was 6%. These results indicate that the primary source of ammonia used for citrulline synthesis by isolated, intact rat liver mitochondria is extramitochondrial, providing also an illustration of the use of 13C-15N spin coupling patterns observed by 13C NMR, as a new tool in the study of ammonia metabolism.

UI MeSH Term Description Entries
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002956 Citrulline
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
July 1979, Journal of biochemical and biophysical methods,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
February 1997, European journal of biochemistry,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
August 2020, The journal of physical chemistry. B,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
October 1997, Journal of biomolecular NMR,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
June 1999, Journal of magnetic resonance (San Diego, Calif. : 1997),
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
November 2013, Inorganic chemistry,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
August 2007, Magnetic resonance in chemistry : MRC,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
April 2013, Physical review letters,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
June 2000, Proceedings of the National Academy of Sciences of the United States of America,
R Nieto, and F Cruz, and J M Tejedor, and G Barroso, and S Cerdán
July 1999, Magnetic resonance in medicine,
Copied contents to your clipboard!