Adhesion receptors are differentially expressed on developing thymocytes and epithelium in human thymus. 1992

S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
Medical Oncology, Laboratory, Imperial Cancer Research Fund, London, England.

The thymic microenvironment consists of a network of interrelated cells of epithelial, fibroblastic, endothelial, and hemopoietic origin. Within this environment, the development of specific T-lymphocyte subpopulations partially depends on the selective interaction of T-cell precursors with such cells. Human thymic epithelial cell strains, generated with a defective retroviral vector containing simian virus 40 (SV40) large T antigen and the neomycin resistance gene or by transfection with an SV40 plasmid defective in the origin of replication, provide useful tools for understanding the mechanisms contributing to the control of T-cell maturation. Because interepithelial, epithelial-macrophage, and lymphocyte-epithelial cell interactions are important for thymocyte differentiation, the distribution of integrin and nonintegrin adhesion receptors on these cells and on developing thymocytes in vivo and in vitro has been examined in detail. Our results indicate that the transformed human thymic epithelial cell strains express the common very late antigen (VLA)-beta 1 receptor and unique alpha chains VLA-2, VLA-3, and VLA-6. The cells are also positive for LFA-3 and ICAM-1 and weakly express beta 3, beta 4, and VNR alpha. They do not express the Leu-cellular adhesion molecules (CAM). This phenotypic profile on cultured thymic epithelium generally corresponds to the distribution of integrin and other receptor molecules on thymic epithelial cells in tissue sections. The majority of thymocytes also express the integrin VLA-beta 1 and -beta 2 chains as well as VLA-4, VLA-6, and LFA-1 alpha(L). Three-color flow cytometric analyses show differential levels of expression of these adhesion receptors on human thymocyte subsets. Taken together with the immunohistochemical localization of extracellular matrix molecules, these studies suggest that both the distribution of receptor-ligand pairs and the level of expression of adhesion molecules may influence T-cell development within the thymus.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007223 Infant A child between 1 and 23 months of age. Infants
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
May 2001, The Journal of clinical endocrinology and metabolism,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
November 2001, The Journal of clinical endocrinology and metabolism,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
March 2022, Non-coding RNA,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
February 2005, Genes and immunity,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
December 2009, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
March 2007, Bone,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
January 2002, Neuroscience,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
November 1994, European journal of immunology,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
May 2009, Osteoarthritis and cartilage,
S M Watt, and J A Thomas, and A J Edwards, and S J Murdoch, and M A Horton
March 2011, Human pathology,
Copied contents to your clipboard!