Molecular characterization of the gene encoding glutamine synthetase in the cyanobacterium Calothrix sp. PCC 7601. 1992

K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
Département de Biochimie et Génétique Moléculaire, Institut Pasteur, Paris, France.

In order to study the regulation of the synthesis of glutamine synthetase in response to changes in environmental parameters (light and nitrogen sources), we have cloned and sequenced the glnA gene from the filamentous cyanobacterium Calothrix PCC 7601. This gene consists of 472 codons and encodes a polypeptide of M(r) 52,290 highly homologous to that from Anabaena PCC 7120, but more distant from those identified from other procaryotes. The relative abundance of the two glnA transcripts (1.6 and 1.8 kb) is equivalent in cells grown under either red or green light, but the 1.6-kb species predominates in nitrate-grown cells and the 1.8-kb species in ammonia-grown cells. The very high identity (74%) observed between the 374-bp long nucleotide sequence upstream from the Calothrix and Anabaena glnA genes suggests the existence of similar regulatory signals for the control of glnA expression in both cyanobacteria.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
December 1988, Journal of bacteriology,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
October 1988, Photosynthesis research,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
July 1987, Molecular microbiology,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
March 1992, Plant molecular biology,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
August 1990, Journal of bacteriology,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
September 1991, Molecular microbiology,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
October 1985, Nucleic acids research,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
July 1991, Biological chemistry Hoppe-Seyler,
K Elmorjani, and S Liotenberg, and J Houmard, and N T de Marsac
June 1995, Journal of bacteriology,
Copied contents to your clipboard!