Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. 1992

Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan.

It has been suggested recently that dopamine in the cerebellum not only acts as a precursor for noradrenaline in afferent fibers supplied by locus coeruleus neurons, but also subserves an independent transmitter role in a separate neural system. The present study was initiated to investigate the possible sources for dopaminergic innervation of the cerebellum. Employing anterograde and retrograde axonal tracing with cholera toxin and a combination of fluorescent retrograde axonal tracing with Fluoro-Gold and tyrosine hydroxylase immunofluorescence histochemistry, we found in the rat that the ventral tegmental area, containing the A10 dopaminergic cell group, sends projection fibers to the cerebellum bilaterally with a slight contralateral predominance. The projections from the ventral tegmental area to the cerebellum were segregated into the dopaminergic one to the cerebellar cortex and the non-dopaminergic one to the deep cerebellar nuclei. Dopaminergic fibers projecting from the ventral tegmental area to the cerebellar cortex terminated mainly in the granular layer, additionally in the Purkinje cell layer, but not at all in the molecular layer. They were distributed predominantly in the crus I ansiform lobule and paraflocculus, and to a lesser extent in the crus II ansiform lobule. On the other hand, non-dopaminergic fibers projecting from the ventral tegmental area to the deep cerebellar nuclei were seen to terminate mainly in the lateral nucleus, to a lesser extent in the interpositus nucleus, but not at all in the medial nucleus. The ventral tegmental area was also observed to receive projection fibers from the lateral and interpositus cerebellar nuclei bilaterally with a contralateral predominance. The projections from the ventral tegmental area to the cerebellum revealed in the present study might exert limbic influences upon the cerebro-cerebellar loops subserving the execution and co-ordination of voluntary movements.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D002529 Cerebellar Nuclei Four clusters of neurons located deep within the WHITE MATTER of the CEREBELLUM, which are the nucleus dentatus, nucleus emboliformis, nucleus globosus, and nucleus fastigii. Dentate Nucleus,Nucleus Dentatus,Nucleus Emboliformis,Nucleus Fastigii,Nucleus Globosus,Amiculum of the Dentate Nucleus,Anterior Interposed Nucleus,Anterior Interpositus Nucleus,Central Nuclei,Deep Cerebellar Nuclei,Dentate Cerebellar Nucleus,Fastigial Cerebellar Nucleus,Fastigial Nucleus,Intracerebellar Nuclei,Lateral Cerebellar Nucleus,Medial Cerebellar Nucleus,Central Nucleus,Cerebellar Nuclei, Deep,Cerebellar Nucleus,Cerebellar Nucleus, Deep,Cerebellar Nucleus, Dentate,Cerebellar Nucleus, Fastigial,Cerebellar Nucleus, Lateral,Cerebellar Nucleus, Medial,Deep Cerebellar Nucleus,Emboliformis, Nucleus,Fastigii, Nucleus,Globosus, Nucleus,Interposed Nucleus, Anterior,Interpositus Nucleus, Anterior,Intracerebellar Nucleus,Nuclei, Central,Nuclei, Cerebellar,Nuclei, Deep Cerebellar,Nuclei, Intracerebellar,Nucleus Fastigius,Nucleus, Anterior Interposed,Nucleus, Anterior Interpositus,Nucleus, Central,Nucleus, Cerebellar,Nucleus, Deep Cerebellar,Nucleus, Dentate,Nucleus, Dentate Cerebellar,Nucleus, Fastigial,Nucleus, Fastigial Cerebellar,Nucleus, Intracerebellar,Nucleus, Lateral Cerebellar,Nucleus, Medial Cerebellar
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013266 Stilbamidines STILBENES with AMIDINES attached.

Related Publications

Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
November 2000, Synapse (New York, N.Y.),
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
August 2012, The Journal of comparative neurology,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
April 2014, Sheng li ke xue jin zhan [Progress in physiology],
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
May 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
March 2015, The European journal of neuroscience,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
January 2013, PloS one,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
November 1999, Alcoholism, clinical and experimental research,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
May 2021, Addiction biology,
Y Ikai, and M Takada, and Y Shinonaga, and N Mizuno
January 2009, The Journal of physiology,
Copied contents to your clipboard!