Inhibition of nitrovasodilator- and acetylcholine-induced relaxation and cyclic GMP accumulation by the cytochrome P-450 substrate, 7-ethoxyresorufin. 1992

B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
Department of Pharmacology and Toxicology, Faculty of Medicine, Queen's University, Kingston, Ont., Canada.

We examined the effect of the cytochrome P-450 substrate, 7-ethoxyresorufin (7-ER), and its corresponding product, resorufin, on nitrovasodilator- and endothelium-dependent relaxation of isolated rat aorta. The EC50 value for glyceryl trinitrate (GTN) induced relaxation was increased over 100-fold by 7-ER and less than 3-fold by resorufin. The EC50 value for sodium nitroprusside (SNP) induced relaxation was increased approximately 12-fold by 7-ER, acetylcholine (ACh) induced relaxation was abolished, and relaxation induced by isopropylnorepinephrine was not significantly affected. GTN-, SNP-, and ACh-induced increases in cyclic GMP accumulation were inhibited by 7-ER, as were basal cyclic GMP levels in endothelium-intact, but not endothelium-denuded tissues. 7-ER decreased GTN biotransformation in intact aorta and decreased the regioselective formation of glyceryl-1,2-dinitrate. The activation by GTN and SNP of aortic guanylyl cyclase in broken cell preparations was not affected by 7-ER, indicating that the inhibitory effect of 7-ER is probably not due to a direct interaction with guanylyl cyclase. The inhibitory effect of 7-ER on GTN-induced relaxation was not altered by the addition of superoxide dismutase, suggesting that 7-ER does not act by increasing superoxide anion concentration (which would serve to increase the degradation of nitric oxide (NO) formed during vascular GTN biotransformation). Our data provide further evidence for the role of the cytochrome P-450--cytochrome P-450 reductase system in the biotransformation of GTN to an activator (presumably nitric oxide) of guanylyl cyclase. The data are consistent with a mode of action of 7-ER involving either competitive inhibition of vascular cytochrome P-450 or uncoupling of vascular cytochrome P-450 reductase from cytochrome P-450. The data also suggest that the cytochrome P-450 system facilitates NO release from SNP and that 7-ER has an inhibitory effect on endothelial nitric oxide synthase.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010078 Oxazines Six-membered heterocycles containing an oxygen and a nitrogen.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
September 1984, European journal of pharmacology,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
January 1983, Journal of cyclic nucleotide and protein phosphorylation research,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
January 1983, Transactions of the Association of American Physicians,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
January 1990, European journal of pharmacology,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
January 1990, Eicosanoids,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
March 1984, The Journal of pharmacology and experimental therapeutics,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
May 1996, British journal of pharmacology,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
September 1997, Acta anaesthesiologica Scandinavica,
B M Bennett, and B J McDonald, and R Nigam, and P G Long, and W C Simon
July 1996, British journal of pharmacology,
Copied contents to your clipboard!