Generation and cytotoxic profile of human peripheral blood CD4+ T lymphocytes. 1992

M J Smyth
Cellular Cytotoxicity Laboratory, Austin Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.

The effects of a variety of metabolic and anti-tumour necrosis factor (TNF) antibodies were utilized to distinguish several different mechanisms of cytotoxicity employed by CD4+ effectors isolated from human peripheral blood lymphocytes (PBL). PBL, unseparated high buoyant density T cells and their CD4+ T cell subsets were activated with anti-CD3 monoclonal antibody (MoAb) and interleukin-2 (IL-2) for 1-5 days. CD4+ T cells activated with IL-2/anti-CD3 MoAb were cytotoxic when directed by a bispecific anti-nitrophenyl (NP)-anti-CD3 MoAb heteroconjugate against both NP-modified nucleated target cells (TC) and non-nucleated sheep red blood cells (SRBC). This CD4+ T population also lysed L929 in a TNF-alpha dependent manner. Interestingly, different mechanisms of nucleated and non-nucleated TC directed lysis by CD4+ effectors were implied by distinct patterns of sensitivity to cholera toxin (CT) and cyclosporin A (CsA). Cyclosporin A and CT inhibited CD4+ T cell directed lysis of SRBC, but not EL4. Cholera toxin, CsA or EGTA pretreatment also significantly inhibited the release of alpha-N-benzyloxycarbonyl-L-lysine-thiobenzylester (BLT)-esterase activity suggesting that degranulation of CD4+ effectors may be a critical step in their redirected lysis of SRBC. Overall, these findings suggested that activated human peripheral blood (PB) CD4+ effectors can lyse TC by at least three distinct mechanisms: (i) a CsA-sensitive directed lysis of SRBC which correlates with exocytosis and presumably occurs via membrane lesions; (ii) a CsA-insensitive directed lysis of NP-modified nucleated TC that does not appear to involve exocytosis and is metabolically distinct; and (iii) a direct TNF-dependent lysis of TNF-sensitive TC. The highly proliferative CD4+ T cell population could be propagated for at least 35 days while retaining cytotoxicity and secreting up to 80 U/mL of IL-2. These data raise the possibility that anti-CD3 MoAb plus IL-2 activated CD4+ T cells may prove effective in adoptive tumour immunotherapy.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000963 Antimetabolites Drugs that are chemically similar to naturally occurring metabolites, but differ enough to interfere with normal metabolic pathways. (From AMA Drug Evaluations Annual, 1994, p2033) Antimetabolite

Related Publications

M J Smyth
July 1993, Cancer immunology, immunotherapy : CII,
M J Smyth
June 1999, Clinical cancer research : an official journal of the American Association for Cancer Research,
M J Smyth
April 1990, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!