Hypothalamic neuropeptide expression after food restriction in Zucker rats: evidence of persistent neuropeptide Y gene activation. 1992

U Pesonen, and R Huupponen, and J Rouru, and M Koulu
Department of Pharmacology, University of Turku, Finland.

The Obese Zucker rat is a model of genetic obesity characterized by hyperphagia, hyperinsulinemia and other endocrine abnormalities. In order to elucidate pathogenetic mechanisms contributing to disturbed feeding behavior in these animals, the effect of food restriction on three hypothalamic neuropeptides involved in the control of food intake was studied. Eighteen male obese and 18 lean Zucker rats were randomly divided into two groups: half of the animals were food-restricted for 2 weeks, while the other half served as controls and were fed ad libitum. The levels of preproneuropeptide Y (preproNPY), preprocorticotropin releasing factor (preproCRF) and preprosomatostatin (preproSOM) mRNAs were determined using in situ hybridization technique. In addition, plasma insulin and corticosterone concentrations were analyzed. Food restriction significantly increased the expression of preproNPY mRNA in the arcuate nucleus in both Zucker phenotypes, while the expressions of preproCRF mRNA in the paraventricular nucleus (PVN) and preproSOM mRNA in the periventricular nucleus (PeV) were not altered. The expression of preproNPY mRNA was significantly greater in control obese animals compared to control lean animals. Food restriction lowered plasma insulin levels, but did not change plasma corticosterone levels. It is concluded that food restriction specifically activates NPY gene transcription in the arcuate nucleus the response being similar in both Zucker phenotypes. The results suggest that orexigenic NPY plays a role in the adaptation to altered feeding status.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D011498 Protein Precursors Precursors, Protein
D011924 Rats, Zucker Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene. Zucker Rat,Zucker Rats,Rat, Zucker
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41

Related Publications

U Pesonen, and R Huupponen, and J Rouru, and M Koulu
February 1993, The American journal of physiology,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
February 1998, Neuropeptides,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
July 2008, Endocrinology,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
September 1992, Brain research. Molecular brain research,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
March 1997, The Journal of endocrinology,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
August 1990, Molecular and cellular neurosciences,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
October 2005, Journal of molecular endocrinology,
U Pesonen, and R Huupponen, and J Rouru, and M Koulu
January 1992, Life sciences,
Copied contents to your clipboard!