Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11-13) by YAC cloning and FISH analysis. 1992

A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation disorders associated with deletions of proximal 15q (q11-q13) of different parental origin. Yeast artificial chromosome (YAC) clones were isolated for 9 previously mapped DNA probes from this region, and for one newly derived marker, LS6-1 (D15S113). A YAC contig of 1-1.5 Mb encompassing four markers (ML34, IR4-3R, PW71, and TD189-1) was constructed. Multi-color fluorescence in situ hybridization (FISH) analysis of interphase nuclei was combined with YAC contig information to provide the following order of markers: cen-IR39-ML34-IR4-3R-PW71-TD189-1-LS6++ +-1-TD3-21-GABRB3-IR10-1-CMW1-tel. FISH analysis was performed on 8 cases of PWS and 3 cases of AS, including 5 patients with normal karyotypes. All eleven patients were deleted for YACs in the interval from IR4-3R to GABRB3. On the proximal side of the deletion interval, 10/10 breakpoints fell within a single ML34 YAC of 370 kb. On the distal side, 8/9 breakpoints fell within a single IR10-1 YAC of 200 kb. These results indicate a striking consistency in the location of the proximal and distal breakpoints in PWS and AS patients. FISH analysis on a previously reported case of familial AS confirmed a submicroscopic deletion including YACs corresponding to LS6-1, TD3-21 and GABRB3 and supports the separation of the PWS and AS critical regions. Since these three YACs do not overlap each other, the minimum size of the AS critical region is > or = 650 kb.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011218 Prader-Willi Syndrome An autosomal dominant disorder caused by deletion of the proximal long arm of the paternal chromosome 15 (15q11-q13) or by inheritance of both of the pair of chromosomes 15 from the mother (UNIPARENTAL DISOMY) which are imprinted (GENETIC IMPRINTING) and hence silenced. Clinical manifestations include MENTAL RETARDATION; MUSCULAR HYPOTONIA; HYPERPHAGIA; OBESITY; short stature; HYPOGONADISM; STRABISMUS; and HYPERSOMNOLENCE. (Menkes, Textbook of Child Neurology, 5th ed, p229) Labhart-Willi Syndrome,Royer Syndrome,Labhart-Willi-Prader-Fanconi Syndrome,Prader Labhart Willi Syndrome,Prader-Labhart-Willi Syndrome,Royer's Syndrome,Willi-Prader Syndrome,Labhart Willi Prader Fanconi Syndrome,Labhart Willi Syndrome,Prader Willi Syndrome,Royers Syndrome,Syndrome, Labhart-Willi,Syndrome, Labhart-Willi-Prader-Fanconi,Syndrome, Prader-Labhart-Willi,Syndrome, Prader-Willi,Syndrome, Royer,Syndrome, Royer's,Syndrome, Willi-Prader,Willi Prader Syndrome
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings

Related Publications

A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
March 1995, American journal of medical genetics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
June 2015, Pediatric clinics of North America,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
December 1993, Genomics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
October 1993, American journal of medical genetics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
February 1998, Genome research,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
April 1993, Genomics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
November 1992, Human genetics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
January 1996, Ryoikibetsu shokogun shirizu,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
January 1992, Human genetics,
A Kuwano, and A Mutirangura, and B Dittrich, and K Buiting, and B Horsthemke, and S Saitoh, and N Niikawa, and S A Ledbetter, and F Greenberg, and A C Chinault
April 2014, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics,
Copied contents to your clipboard!