Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. 1976

A K Mircheff, and E M Wright

A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and core material. Sucrase specific activity in the purified brush border plasma membranes was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochrome c reductase, nonspecific esterase, beta-glucuronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity. Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent 35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein. Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A K Mircheff, and E M Wright
March 1986, The Journal of general physiology,
A K Mircheff, and E M Wright
January 1974, Biochemical and biophysical research communications,
A K Mircheff, and E M Wright
January 1997, The American journal of physiology,
A K Mircheff, and E M Wright
November 1976, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!