Renal epithelial cell polarity. 1992

W J Nelson
Department of Molecular and Cellular Physiology, Stanford University School of Medicine 94305-5426.

Recent cell biologic studies of protein trafficking, sorting, and distribution in polarized renal epithelial cells have begun to provide important new insights into the mechanisms involved in generating and maintaining cell surface polarity. Advances in this field have been rapid in the last year, due in part to the development of new approaches to analyzing protein delivery and distribution in polarized renal cells grown in vitro. Sorting signals within apical and basal-lateral membrane proteins have been described that may be involved in the segregation of proteins into different populations of transport vesicles in the trans-Golgi network; the nature of these signals has provided insight into the mechanisms involved. Elements of the cytoskeleton appear to be involved in the delivery of these transport vesicles to the appropriate membrane domain (microtubules) and in the retention of specific proteins in the correct membrane domain (membrane skeleton). Finally, detailed analysis of two prominent renal diseases, ischemia and polycystic kidney disease, indicates that abnormalities in the regulation of membrane protein distribution may be a contributing factor in generating the disease state.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016764 Cell Polarity Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains. Cell Polarities,Polarities, Cell,Polarity, Cell

Related Publications

W J Nelson
October 1991, Trends in cell biology,
W J Nelson
April 1997, The American journal of physiology,
W J Nelson
July 1995, Seminars in nephrology,
W J Nelson
August 2014, Journal of cell science,
W J Nelson
February 1999, Pediatric nephrology (Berlin, Germany),
W J Nelson
March 2011, American journal of physiology. Renal physiology,
W J Nelson
October 2006, American journal of physiology. Renal physiology,
W J Nelson
December 2011, Trends in cell biology,
W J Nelson
January 1993, Harvey lectures,
W J Nelson
January 2001, Annual review of genetics,
Copied contents to your clipboard!