Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae. 1991

E Wanker, and K Schörgendorfer, and H Schwab
Institut für Biotechnologie, Technische Universität Graz, Austria.

The gene coding for the inulin hydrolyzing enzyme levanase which was previously cloned from Bacillus subtilis was fused to the tac-promoter. Overexpression in Escherichia coli resulted in high amounts of intracellularly produced levanase (up to 20 U mg-1). After removal of the bacterial 5' sequences, the levanase gene was also cloned into a yeast expression vector based on the PGK-promoter. Clones containing the intact levanase gene including the bacterial signal sequence gave rise to synthesis of active levanase by Saccharomyces cerevisiae transformants. A considerable amount of levanase protein was found in the culture medium (around 0.5 U ml-1) indicating efficient secretion of B. subtilis levanase from yeast.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

E Wanker, and K Schörgendorfer, and H Schwab
August 1995, Gene,
E Wanker, and K Schörgendorfer, and H Schwab
May 1995, Applied and environmental microbiology,
E Wanker, and K Schörgendorfer, and H Schwab
February 1993, Journal of general microbiology,
E Wanker, and K Schörgendorfer, and H Schwab
November 1992, Current microbiology,
E Wanker, and K Schörgendorfer, and H Schwab
May 1987, Molecular & general genetics : MGG,
E Wanker, and K Schörgendorfer, and H Schwab
January 1995, Applied microbiology and biotechnology,
E Wanker, and K Schörgendorfer, and H Schwab
March 1986, Biochemical and biophysical research communications,
E Wanker, and K Schörgendorfer, and H Schwab
June 1984, Journal of bacteriology,
E Wanker, and K Schörgendorfer, and H Schwab
February 1985, Journal of bacteriology,
E Wanker, and K Schörgendorfer, and H Schwab
September 1987, Applied and environmental microbiology,
Copied contents to your clipboard!