Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo. 1991

P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
Scotgen Limited, Aberdeen, Scotland, UK.

We transferred the complementarity determining regions from a murine monoclonal antibody that neutralizes infection by respiratory syncytial virus (RSV) to a human IgG1 monoclonal antibody. The resulting reshaped human antibody lost affinity for RSV, but an additional alteration to one of the framework regions restored binding affinity and specificity. This second generation reshaped human monoclonal antibody cross-reacted with all clinical isolates of RSV tested and both prevented disease and cured mice even when administered four days after infection. We expect the antibody will prove useful in the management of this major childhood disease.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010253 Respirovirus Infections Infections with viruses of the genus RESPIROVIRUS, family PARAMYXOVIRIDAE. Host cell infection occurs by adsorption, via HEMAGGLUTININ, to the cell surface. Infections, Respirovirus
D012136 Respiratory Syncytial Viruses A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported. Chimpanzee Coryza Agent,Orthopneumovirus,RSV Respiratory Syncytial Virus,Chimpanzee Coryza Agents,Coryza Agent, Chimpanzee,Orthopneumoviruses,Respiratory Syncytial Virus,Syncytial Virus, Respiratory,Virus, Respiratory Syncytial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
March 2002, Nihon rinsho. Japanese journal of clinical medicine,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
September 1998, Pediatrics,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
September 1998, Pediatrics,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
January 2015, The Journal of infectious diseases,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
November 1981, American journal of diseases of children (1960),
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
April 2013, The Cochrane database of systematic reviews,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
March 1985, Journal of virology,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
August 2009, Antiviral research,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
December 2006, Journal of virology,
P R Tempest, and P Bremner, and M Lambert, and G Taylor, and J M Furze, and F J Carr, and W J Harris
May 1987, The Journal of general virology,
Copied contents to your clipboard!