Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. 2003

Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
Wageningen University, Laboratory of Virology, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands.

Repeated baculovirus infections in cultured insect cells lead to the generation of defective interfering viruses (DIs), which accumulate at the expense of the intact helper virus and compromise heterologous protein expression. In particular, Autographa californica multicapsid nucleopolyhedovirus (AcMNPV) DIs are enriched in an origin of viral DNA replication (ori) not associated with the homologous regions (hrs). This non-hr ori is located within the coding sequence of the non-essential p94 gene. We investigated the effect of a deletion of the AcMNPV non-hr ori on the heterologous protein expression levels following serial passage in Sf21 insect cells. Using homologous ET recombination in E. coli, deletions within the p94 gene were made in a bacterial artificial chromosome (BAC) containing the entire AcMNPV genome (bacmid). All bacmids were equipped with an expression cassette containing the green fluorescent protein gene and a gene encoding the classical swine fever virus E2 glycoprotein (CSFV-E2). For the parental (intact) bacmid only, a strong accumulation of DIs with reiterated non-hr oris was observed. This was not observed for the mutants, indicating that removal of the non-hr ori enhanced the genetic stability of the viral genome upon passaging. However, for all passaged viruses it was found that the entire BAC vector including the expression cassette was spontaneously deleted from the viral genome, leading to a rapid decrease in GFP and CSFV-E2 production. The rationale for the (intrinsic) genetic instability of the BAC vector in insect cells and the implications with respect to large-scale production of proteins with bacmid-derived baculoviruses are discussed.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003673 Defective Viruses Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. Incomplete Viruses,Defective Hybrids,Defective Hybrid,Defective Virus,Hybrid, Defective,Hybrids, Defective,Incomplete Virus,Virus, Defective,Virus, Incomplete,Viruses, Defective,Viruses, Incomplete
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012692 Serial Passage Inoculation of a series of animals or in vitro tissue with an infectious bacterium or virus, as in VIRULENCE studies and the development of vaccines. Passage, Serial,Passages, Serial,Serial Passages
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions

Related Publications

Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
October 1996, Current opinion in biotechnology,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
October 2007, Current drug targets,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
January 1997, Archives of insect biochemistry and physiology,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
January 1997, Methods in enzymology,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
January 1992, Methods in molecular biology (Clifton, N.J.),
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
August 2017, Journal of biotechnology,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
February 1997, Wei sheng wu xue bao = Acta microbiologica Sinica,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
February 1997, Protein expression and purification,
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
January 2020, Methods in molecular biology (Clifton, N.J.),
Gorben P Pijlman, and Jessica E van Schijndel, and Just M Vlak
July 1992, Neuroreport,
Copied contents to your clipboard!