Yeast alcohol dehydrogenase bound to membranes: surface and microenvironment effects on activity and stability. 1990

C L Kennedy, and M M Domach
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

The enzyme, yeast alcohol dehydrogenase, was adsorbed to porous nitrocellulose and nylon membranes. The two membranes provide different surface chemistries as indicated by the results of the streaming potential, enzyme adsorption, and fluorescein isothiocyanate adsorption experiments. The stability of the enzyme, as determined by continually measuring the extent of coenzyme reduction as a function of time, appeared to be much less for the enzyme adsorbed to the positively charged membrane surface. Moreover, the enzyme adsorbed to the positively charged membrane was the least responsive to pulses of the reducing agent, dithiothreitol, and appeared to exhibit the highest transition temperature when subjected to differential scanning calorimetry analysis. These results indicate that the entropically spreading process observed for other adsorbed proteins may be occurring and the process is more rapid and extensive when enzyme is adsorbed to the nylon than the nitrocellulose membrane. In addition to the relative stability of the enzyme on two different surfaces being examined, the effect of the microenvironment on modulating the activity of the enzyme was investigated by using the reversibility of the enzyme-catalyzed reaction as a probe of the average local environment of the enzyme. It was found that a threshold buffer concentration existed that, once exceeded, the effect of proton production by the reaction could be suppressed.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009757 Nylons Polymers where the main polymer chain comprises recurring amide groups. These compounds are generally formed from combinations of diamines, diacids, and amino acids and yield fibers, sheeting, or extruded forms used in textiles, gels, filters, sutures, contact lenses, and other biomaterials. Polyamides,Dermalon,Ethilon,Nylon,Polyamide,Supramid,Dermalons,Ethilons,Supramids
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003101 Collodion A nitrocellulose solution in ether and alcohol. Collodion has a wide range of uses in industry including applications in the manufacture of photographic film, in fibers, in lacquers, and in engraving and lithography. In medicine it is used as a drug solvent and a wound sealant. Nitrocellulose,Celloidin,Cellulose Nitrate,Collodion Cotton,Pyroxylin,Cotton, Collodion,Nitrate, Cellulose

Related Publications

C L Kennedy, and M M Domach
January 1978, The International journal of biochemistry,
C L Kennedy, and M M Domach
July 1965, Journal of biochemistry,
C L Kennedy, and M M Domach
February 1960, The Journal of biological chemistry,
C L Kennedy, and M M Domach
January 1990, Acta biochimica et biophysica Hungarica,
C L Kennedy, and M M Domach
February 1992, Biotechnology and bioengineering,
C L Kennedy, and M M Domach
January 2001, Biochemistry. Biokhimiia,
Copied contents to your clipboard!