Overexpression and purification of asparagine synthetase from Escherichia coli. 1992

A Sugiyama, and H Kato, and T Nishioka, and J Oda
Institute for Chemical Research, Kyoto University.

Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUC18, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15% of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001217 Aspartate-Ammonia Ligase An enzyme that catalyzes the formation of asparagine from ammonia and aspartic acid, in the presence of ATP. EC 6.3.1.1. Asparagine Synthase,Asparagine Synthetase,Asparagine Synthetase B,Aspartate Ammonia Ligase,Ligase, Aspartate-Ammonia,Synthase, Asparagine,Synthetase B, Asparagine,Synthetase, Asparagine
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

A Sugiyama, and H Kato, and T Nishioka, and J Oda
February 2000, Protein expression and purification,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
May 1996, Acta crystallographica. Section D, Biological crystallography,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
November 1993, Preparative biochemistry,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
September 1998, Biochemistry,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
April 1989, The Journal of biological chemistry,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
January 1998, Methods in enzymology,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
January 1994, Microbios,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
July 1987, Archives of biochemistry and biophysics,
A Sugiyama, and H Kato, and T Nishioka, and J Oda
July 1986, Biochemistry,
Copied contents to your clipboard!