Antibody-targeted photolysis: in vitro immunological, photophysical, and cytotoxic properties of monoclonal antibody-dextran-Sn(IV) chlorin e6 immunoconjugates. 1992

S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
Center for Photochemical Sciences, Bowling Green State University, Ohio 43403.

A set of anti-melanoma immunoconjugates were prepared which contained chlorin e6: antibody molar ratios of 18.9:1, 11.2:1, 6.8:1, and 1.7:1. All immunoconjugates retained antigen binding activity regardless of the chromophore:antibody substitution ratio that was attained. In contrast, the ground-state absorption spectra of the immunoconjugates showed features which appeared to be dependent on the chromophore:antibody molar ratio. In addition, the quantum yield of singlet oxygen generated by the conjugated chromophores was observed to be significantly less than that observed with the unbound dye. Time-resolved absorbance spectroscopy of the chromophore excited triplet state indicated that the loss of singlet oxygen quantum yield resulted from diminished chromophore triplet yield. Analysis of data obtained from in vitro photolysis of target melanoma cells, in combination with that obtained from the immunochemical and photochemical studies, indicates that the observed immunoconjugate phototoxicity can be reasonably quantitatively represented by (1) the ability of the immunoconjugate to bind SK-MEL-2 cell surface antigen, (2) the amount of chromophore localized at the target cells by immunoconjugate binding, (3) the delivered dose of light at 634 nm, and (4) the singlet oxygen quantum yield of the antibody-bound photosensitizer. Though these data argue strongly for photolysis by the cumulative dosage of singlet oxygen at the cell membrane, nonetheless, the concurrent photoinduced release of other cytotoxic agents should not be ruled out.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D002735 Chlorophyllides Products of the hydrolysis of chlorophylls in which the phytic acid side chain has been removed and the carboxylic acids saponified. Chlorophyllide
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000922 Immunotoxins Semisynthetic conjugates of various toxic molecules, including RADIOACTIVE ISOTOPES and bacterial or plant toxins, with specific immune substances such as IMMUNOGLOBULINS; MONOCLONAL ANTIBODIES; and ANTIGENS. The antitumor or antiviral immune substance carries the toxin to the tumor or infected cell where the toxin exerts its poisonous effect. Affinotoxin,Antibody-Toxin Conjugate,Antibody-Toxin Conjugates,Antibody-Toxin Hybrid,Antibody-Toxin Hybrids,Chimeric Toxins,Cytotoxin-Antibody Conjugate,Cytotoxin-Antibody Conjugates,Monoclonal Antibody-Toxin Conjugate,Targeted Toxin,Targeted Toxins,Toxin Carriers,Toxin Conjugates,Toxin-Antibody Conjugate,Toxin-Antibody Conjugates,Toxin-Antibody Hybrid,Toxin-Antibody Hybrids,Toxins, Chimeric,Toxins, Targeted,Affinotoxins,Chimeric Toxin,Immunotoxin,Monoclonal Antibody-Toxin Conjugates,Toxin Carrier,Toxin Conjugate,Antibody Toxin Conjugate,Antibody Toxin Conjugates,Antibody Toxin Hybrid,Antibody Toxin Hybrids,Antibody-Toxin Conjugate, Monoclonal,Antibody-Toxin Conjugates, Monoclonal,Carrier, Toxin,Carriers, Toxin,Conjugate, Antibody-Toxin,Conjugate, Cytotoxin-Antibody,Conjugate, Monoclonal Antibody-Toxin,Conjugate, Toxin,Conjugate, Toxin-Antibody,Conjugates, Antibody-Toxin,Conjugates, Cytotoxin-Antibody,Conjugates, Monoclonal Antibody-Toxin,Conjugates, Toxin,Conjugates, Toxin-Antibody,Cytotoxin Antibody Conjugate,Cytotoxin Antibody Conjugates,Hybrid, Antibody-Toxin,Hybrid, Toxin-Antibody,Hybrids, Antibody-Toxin,Hybrids, Toxin-Antibody,Monoclonal Antibody Toxin Conjugate,Monoclonal Antibody Toxin Conjugates,Toxin Antibody Conjugate,Toxin Antibody Conjugates,Toxin Antibody Hybrid,Toxin Antibody Hybrids,Toxin, Chimeric,Toxin, Targeted

Related Publications

S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
January 1991, Annals of the New York Academy of Sciences,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
December 1998, International journal of oncology,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
November 1992, Journal of immunological methods,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
January 1990, Bioconjugate chemistry,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
November 1994, Annals of the New York Academy of Sciences,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
January 2000, British journal of cancer,
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
January 1989, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
S L Rakestraw, and W E Ford, and R G Tompkins, and M A Rodgers, and W P Thorpe, and M L Yarmush
May 2003, Cancer immunology, immunotherapy : CII,
Copied contents to your clipboard!