Dynamics and localization of early B-lymphocyte precursor cells (pro-B cells) in the bone marrow of scid mice. 1992

D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
Department of Anatomy, McGill University, Montreal, Quebec, Canada.

Mice homozygous for the scid (severe combined immunodeficiency) mutation are generally unable to produce B lymphocytes, a condition attributed to defective rearrangement of immunoglobulin genes in precursor B cells. Some early B-lineage cells are present in the bone marrow (BM), however. In scid mice, we defined three subsets of early progenitor B cells lacking mu heavy chains (pro-B cells) based on the expression of terminal deoxynucleotidyl transferase (TdT) and B220 glycoprotein: (a) early pro-B cells (TdT+B220-), (b) intermediate pro-B cells (TdT+B220+), and (c) late pro-B cells (TdT-B220+). Double immunofluorescence labeling of BM cell suspensions has shown normal numbers of early and intermediate pro-B cells, substantially reduced numbers of late pro-B cells, and an absence of pre-B cells and B cells. Early and intermediate pro-B cells accumulated in metaphase in near-normal numbers after intraperitoneal (IP) vincristine administration. B220+ pro-B cells have been localized in BM sections by the binding of intravenously (IV) administered 125I monoclonal antibody (MoAb) 14.8, detected by light and electron microscope radioautography. Many B220+ cells were located peripherally in the bone-lining cell layers associated with stromal reticular cells. More centrally located B220+ cells were frequently associated with macrophages containing prominent cytoplasmic inclusions. Occasional B220+ cells were present in venous sinusoids. These results demonstrate that many pro-B cells in scid mice occupy microenvironments in the BM near the surrounding bone. The pro-B cells maintain normal rates of production during stages of presumptive mu heavy-chain gene rearrangement, apparently unaffected by the absence of a mature B cell pool. Nearly all defective cells then abort at the late pro-B cell stage and are deleted, apparently by macrophages. The findings contribute to models of in vivo differentiation, regulation, localization, and selection of early B-lineage cells in the BM.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D004253 DNA Nucleotidylexotransferase A non-template-directed DNA polymerase normally found in vertebrate thymus and bone marrow. It catalyzes the elongation of oligo- or polydeoxynucleotide chains and is widely used as a tool in the differential diagnosis of acute leukemias in man. EC 2.7.7.31. Terminal Addition Enzyme,Terminal Deoxyribonucleotidyltransferase,Deoxynucleotidyl Transferase,Deoxynucleotidyltransferase,Desoxynucleotidyl Transferase,Desoxynucleotidyltransferase,Tdt Antigen,Terminal Deoxynucleotidyl Transferase,Terminal Deoxyribonucleotidyl Transferase,Addition Enzyme, Terminal,Antigen, Tdt,Deoxynucleotidyl Transferase, Terminal,Deoxyribonucleotidyl Transferase, Terminal,Deoxyribonucleotidyltransferase, Terminal,Enzyme, Terminal Addition,Nucleotidylexotransferase, DNA,Transferase, Deoxynucleotidyl,Transferase, Desoxynucleotidyl,Transferase, Terminal Deoxynucleotidyl,Transferase, Terminal Deoxyribonucleotidyl
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
May 1990, Experimental hematology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
February 1987, The Journal of experimental medicine,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
November 1989, European journal of immunology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
March 1989, Immunology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
February 2011, American journal of hematology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
January 1988, Advances in experimental medicine and biology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
November 1990, European journal of immunology,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
February 2013, Journal of immunology (Baltimore, Md. : 1950),
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
April 1990, Proceedings of the National Academy of Sciences of the United States of America,
D G Osmond, and N Kim, and R Manoukian, and R A Phillips, and S A Rico-Vargas, and K Jacobsen
March 1993, Blood,
Copied contents to your clipboard!