Different patterns of release of endothelium-derived relaxing factor and prostacyclin. 1992

J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
William Harvey Research Institute, Saint Bartholomew's Hospital Medical College, London.

1. Release of endothelium derived relaxing factor (EDRF) and prostacyclin (PGI2) from endothelial cells (EC) cultured from bovine aortae was measured by bioassay and radioimmunoassay, respectively, during infusions (10 min) of bradykinin (BK), adenosine diphosphate (ADP), arachidonic acid (AA), alkaline buffers and the free-bases (FB) of L-arginine or D-arginine. Release of EDRF from the luminally perfused rabbit aorta was also measured during infusions (10 min) of acetylcholine (ACh), substance P and ADP. 2. Bradykinin (10 or 30 nM) infused through the column of EC induced release of both EDRF and PGI2, neither of which was maintained for the duration of the infusion. 3. ADP (1.6 or 4 microM) infused through the column of EC induced release of a EDRF which was maintained for the duration of the infusion and a release of PGI2 which lasted for a much shorter period. 4. Arachidonic acid (30 or 90 microM) infused through the column of EC caused a sustained release of EDRF and PGI2, both of which outlasted the infusion of AA. 5. L-Arginine FB, D-arginine FB or alkaline buffer infused through the column of EC released EDRF, but only small amounts of PGI2. The release of EDRF outlasted the period of infusion and was due to an increase in the pH of the Krebs solution perfusing the EC. 6. Infusions of ACh (0.25-1 microM) or ADP (4-16 microM) caused a sustained release of EDRF from the luminally-perfused rabbit aorta, whereas infusion of substance P (3.3-10 microM) caused only a transient release of EDRF. 7. These results show that distinct patterns of EDRF release exist to different agonists in both cultured and in situ EC, and that EDRF and PGI2 do not necessarily follow the same time course of release. Furthermore, sustained release of EDRF does not require the constant infusion of the precursor, L-arginine, whereas sustained release of PGI2 only occurs when AA, the precursor of PGI2, is present in the extracellular medium.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
January 1989, Advances in prostaglandin, thromboxane, and leukotriene research,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
May 1988, European journal of pharmacology,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
August 1988, Methods and findings in experimental and clinical pharmacology,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
October 1986, Revista clinica espanola,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
June 1986, The American journal of physiology,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
May 1992, The American journal of physiology,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
March 1988, Thrombosis research,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
April 1990, European journal of pharmacology,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
January 1989, Journal of neurosurgery,
J A Mitchell, and G de Nucci, and T D Warner, and J R Vane
September 1988, Journal of the American College of Cardiology,
Copied contents to your clipboard!