Mapping of antigenic sites to monoclonal antibodies on the primary structure of the F1-ATPase beta subunit from Escherichia coli: concealed amino-terminal region of the subunit in the F1. 1992

J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
Department of Biotechnology, Faculty of Engineering Sciences, Okayama University, Japan.

To analyze relationships between the ternary and primary structures of the beta subunit of Escherichia coli F1 ATPase, we prepared two monoclonal antibodies beta 12 and beta 31 against the beta peptide. These antibodies bind to the beta subunit but do not bind to the F1 ATPase, resulting in no inhibition of the ATPase activities. Several different portions of the beta subunit peptide were prepared by constructing expression plasmids carrying the corresponding DNA segment of the beta subunit gene amplified by the polymerase chain reaction. Western blotting analysis using these peptides revealed that the antibodies bound to a peptide of 104 amino acid residues from the amino terminal end, which is outside the previously estimated catalytic domain between residues 140 and 350. These results indicated that the amino terminal portion of the maximal 104 residues is not exposed to the surface of the F1 ATPase. The binding spectrum of the antibodies to the subunit from various species including Vibrio alginolyticus and thermophilic bacterium PS3 indicated possible epitope sequences within the 104 residues. The ternary structure of the beta subunit, in terms of cleavage sites by endopeptidases, was analyzed using the antibodies. A 43-kDa peptide without binding ability to beta 12 and beta 31 appeared upon cleavage by lysyl endopeptidase. The results suggested that lysyl residues from around 70 to 100 from the amino terminus are exposed to the surface of the beta subunit.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
August 1987, The Journal of biological chemistry,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
February 1994, The Journal of biological chemistry,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
August 1994, Archives of biochemistry and biophysics,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
June 1987, The Journal of biological chemistry,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
December 1990, The Journal of biological chemistry,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
November 1986, FEBS letters,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
July 1999, The Journal of biological chemistry,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
April 1987, Archives of biochemistry and biophysics,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
June 1988, FEBS letters,
J Miki, and T Matsuda, and H Kariya, and H Ohmori, and T Tsuchiya, and M Futai, and H Kanazawa
February 1987, Archives of biochemistry and biophysics,
Copied contents to your clipboard!