Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos. 1992

N P Torpey, and J Heasman, and C C Wylie
Wellcome Trust, University of Cambridge, UK.

We report the identity of a major component of Triton-insoluble extracts from Xenopus oocytes and early embryos. In a previous paper we showed that an antibody, Z9, cross-reacts with two polypeptides from such extracts (Mr 56,000 and 57,000) as well as Xenopus vimentin. Direct microsequencing of the Mr 57,000 protein shows near identity of three tryptic fragments with regions of the predicted amino acid sequence of XCK1(8), a basic cytokeratin whose mRNA is known to be expressed in Xenopus oocytes. We have raised an antibody, CK7, against a fusion protein generated from this cDNA. The specificity of this antibody has been tested using 1- and 2-dimensional immunoblotting, which show that it is specific for the Mr 56,000 and 57,000 proteins, suggesting that these two proteins may be the products of two non-allelic XCK1(8) genes. The antibody does not cross-react with vimentin. We have used CK7 to follow the distribution of XCK1(8) throughout development by immunoblotting and immunocytochemistry. In larval stages, strong staining is seen in the notocord, the apical epithelia of the gut, the mesentery, and a few cells in the spinal cord. In oocytes and early embryos, two distinct intermediate filament (IF) networks can be distinguished: a cortical cytokeratin network, and a deeper vimentin one. In addition, the oocyte germ plasm stains with Z9 but not CK7. We propose that such distinct distributions of each IF protein reflect functional differences during early development.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009672 Notochord A cartilaginous rod of mesodermal cells at the dorsal midline of all CHORDATE embryos. In lower vertebrates, notochord is the backbone of support. In the higher vertebrates, notochord is a transient structure, and segments of the vertebral column will develop around it. Notochord is also a source of midline signals that pattern surrounding tissues including the NEURAL TUBE development. Chordamesoderm,Chordamesoderms,Notochords
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N P Torpey, and J Heasman, and C C Wylie
June 1988, Development (Cambridge, England),
N P Torpey, and J Heasman, and C C Wylie
October 1984, Journal of embryology and experimental morphology,
N P Torpey, and J Heasman, and C C Wylie
December 1995, Biochemistry,
N P Torpey, and J Heasman, and C C Wylie
October 1989, Differentiation; research in biological diversity,
N P Torpey, and J Heasman, and C C Wylie
September 1982, Biochemical and biophysical research communications,
N P Torpey, and J Heasman, and C C Wylie
July 1987, Development (Cambridge, England),
N P Torpey, and J Heasman, and C C Wylie
July 2000, Human reproduction (Oxford, England),
N P Torpey, and J Heasman, and C C Wylie
May 1996, Biochemical and biophysical research communications,
N P Torpey, and J Heasman, and C C Wylie
January 2004, Methods in molecular biology (Clifton, N.J.),
N P Torpey, and J Heasman, and C C Wylie
January 1999, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!