Multiple ionic mechanisms are activated by the potent agonist quisqualate in cultured cerebellar Purkinje neurons. 1992

A J Yool, and R M Krieger, and D L Gruol
Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037.

Current clamp recordings were used to analyze responses of cultured cerebellar Purkinje neurons to quisqualate and several other selective non-N-methyl- D-aspertate (NMDA) agonists. Quisqualate, a potent agonist in the cerebellar Purkinje neuron, evoked both short- and long-term changes in excitability, that activated within seconds and lasted for several minutes. Two components of the response were activated differentially by subtype selective agonists, and differed in their mechanism of expression and time course. The initial component of the response was activated by ionotropic agonists ((RS)-d-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) domoate), and by quisqualate and glutamate which are effective at both the ionotropic and metabotropic quisqualate receptor subtypes, but not by the metabotropic agonist trans (+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD). This component was dependent on extracellular Na+, and characterized by a rapid depolarization with a short latency (less than 1-2 s) and a decrease in membrane resistance as expected for an ionotropic reponse. The rapid depolarization extended into an agonist-dependent plateau phase, which could not be evoked by depolarization alone. The second ('late') phase of the response was a slowly-activating, long-lasting change in membrane excitability, accompanied by little or no change in the membrane potential. The late phase, marked by an increase in voltage-dependent bursting spike activity, was induced by the metabotropic agonist, ACPD, and by quisqualate and glutamate, but not by ionotropic selective agonists such as AMPA. Little or no bursting was evoked by AMPA, domoate, kainate or homocysteate. This late phase was also accompanied by increases in the magnitude and duration of the complex spikes and in the afterhyperpolarization following brief current-driven depolarizations. The slower time course of the late component is consistent with a pathway involving second messenger systems. Our results support the hypothesis that coregulation of both ionotropic and metabotropic mechanisms produces the complex and prolonged excitatory response characteristic of the Purkinje neuron.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

A J Yool, and R M Krieger, and D L Gruol
December 1994, The Journal of pharmacology and experimental therapeutics,
A J Yool, and R M Krieger, and D L Gruol
April 1988, Neuroscience letters,
A J Yool, and R M Krieger, and D L Gruol
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A J Yool, and R M Krieger, and D L Gruol
March 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A J Yool, and R M Krieger, and D L Gruol
April 2017, Bulletin of experimental biology and medicine,
A J Yool, and R M Krieger, and D L Gruol
July 2016, eLife,
Copied contents to your clipboard!