Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. 1992

R S Petralia, and R J Wenthold
Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892.

Since four AMPA-type excitatory amino acid receptor subunits have been cloned recently, it is now possible to localize these important molecules in the nervous system. A comprehensive study of AMPA receptor immunocytochemistry was carried out on vibratome sections of rat brain, which were immunolabeled with antibodies made against peptides corresponding to the C-terminal portions of AMPA-receptor subunits: GluR1, GluR2/3, and GluR4. Labeling was most prominent in forebrain structures such as the olfactory bulb and tubercle, septal nuclei, amygdaloid complex, hippocampus, induseum griseum, habenula, and interpeduncular nucleus, and in the cerebellum. Different patterns of immunolabeling were evident with the antibodies to the four subunits, with marked contrast between densely and lightly stained structures with antibody to GluR1, widespread dense staining with antibody to GluR2/3, and moderate staining with antibody to GluR4. In the parietal cortex, some non-pyramidal neurons were more densely stained than pyramidal cells with antibodies to GluR1. Neurons of the main olfactory bulb, other than granule cells, were most densely stained with antibody to GluR1. In the cerebellum, Bergmann glia were densely stained with antibodies to GluR1 and 4, while neurons, other than granule cells, were most densely stained with antibody to GluR2/3. Immunolabeling patterns of all antibodies were consistent with that of previous in situ hybridization histochemistry studies and with the overall pattern of 3H-AMPA binding. Electron microscopy of thin sections taken from immunolabeled vibratome sections of hippocampus and cerebral cortex showed staining which was restricted mainly to postsynaptic densities and adjacent dendritoplasm, and to neuron cell body cytoplasm. We saw no convincing examples of stained presynaptic terminals, and only limited evidence of glial staining, excepting Bergmann glia.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

R S Petralia, and R J Wenthold
November 1997, Brain research,
R S Petralia, and R J Wenthold
November 1998, Cell and tissue research,
R S Petralia, and R J Wenthold
February 1997, The Journal of comparative neurology,
R S Petralia, and R J Wenthold
February 1980, The Journal of comparative neurology,
R S Petralia, and R J Wenthold
April 1989, Brain research,
Copied contents to your clipboard!