Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. 1992

J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461.

Heterotypic gap junctions formed by pairing Xenopus oocytes expressing hemichannels formed of Cx32 with those expressing hemichannels formed of Cx26 displayed novel transjunctional voltage (Vj) dependence not predicted by the behavior of these connexins in homotypic configurations. Rectification of initial and steady-state currents was observed. Relative positivity and negativity on the Cx26 side of the junction resulted in increased and decreased initial conductance (gj0), respectively. Only relative positivity on the Cx26 decreased steady-state conductance (gj infinity). This behavior suggested that interactions between hemichannels influences gap junction gating. The role of the first extracellular loop (E1) in these interactions was examined by pairing Cx32 and Cx26 with a chimeric connexin in which Cx32 E1 was replaced with Cx26 E1 (Cx32*26E1). Both junctions rectified with gj0/Vj relations that were less steep than that observed for Cx32/Cx26. Decreases in gj infinity occurred for either polarity Vj in the Cx32/Cx32*26E1 junction. Mutation of two amino acids in Cx26 E1 increased the steepness of both the gj0/Vj and gj infinity/Vj relations. These data demonstrate that fast rectification can arise from mismatched E1 domains and that E1 may contribute to the voltage sensing mechanisms underlying both fast and slow Vj-dependent processes.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
March 2007, Biophysical journal,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
March 1996, Experimental cell research,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
September 1999, Biophysical journal,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
April 2014, FEBS letters,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
December 1999, Biophysical journal,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
December 2000, Archives of biochemistry and biophysics,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
February 2000, Circulation research,
J B Rubin, and V K Verselis, and M V Bennett, and T A Bargiello
June 2015, Neuroscience letters,
Copied contents to your clipboard!