Defective DNA endonuclease activities in Fanconi's anemia cells, complementation groups A and B. 1992

M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
Department of Laboratory Medicine and Pathology, UMDNJ-New Jersey Medical School, Newark 07103.

Cells from patients with the inherited disorder, Fanconi's anemia (FA), were analyzed for endonucleases which recognize DNA interstrand cross-links and monoadducts produced by psoralen plus UVA irradiation. Two chromatin-associated DNA endonuclease activities, defective in their ability to incise DNA-containing adducts produced by psoralen plus UVA light, have been identified and isolated in nuclei of FA cells. In FA complementation group A (FA-A) cells, one endonuclease activity, pI 4.6, which recognizes psoralen intercalation and interstrand cross-links, has 25% of the activity of the normal human endonuclease, pI 4.6, on 8-methoxypsoralen (8-MOP) plus UVA-damaged DNA. In FA complementation group B (FA-B) cells, a second endonuclease activity, pI 7.6, which recognizes psoralen monoadducts, has 50% and 55% of the activity, respectively, of the corresponding normal endonuclease on 8-MOP or angelicin plus UVA-damaged DNA. Kinetic analysis reveals that both the FA-A endonuclease activity, pI 4.6, and the FA-B endonuclease activity, pI 7.6, have decreased affinity for psoralen plus UVA-damaged DNA. Both the normal and FA endonucleases showed approximately a 2.5-fold increase in activity on psoralen plus UVA-damaged reconstituted nucleosomal DNA compared to damaged non-nucleosomal DNA, indicating that interaction of these FA endonucleases with nucleosomal DNA is not impaired. These deficiencies in two nuclear DNA endonuclease activities from FA-A and FA-B cells correlate with decreased levels of unscheduled DNA synthesis (UDS), in response to 8-MOP or angelicin plus UVA irradiation, in these cells in culture.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008730 Methoxsalen A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. 8-Methoxypsoralen,Ammoidin,Xanthotoxin,8-MOP,Deltasoralen,Dermox,Geroxalen,Meladinina,Meladinine,Meloxine,Methoxa-Dome,Méladinine,Oxsoralen,Oxsoralen-Ultra,Puvalen,Ultramop,8 MOP,8 Methoxypsoralen,8MOP,Methoxa Dome,Oxsoralen Ultra
D011564 Furocoumarins Polycyclic compounds consisting of a furan ring fused with coumarin. They commonly occur in PLANTS, especially UMBELLIFERAE and RUTACEAE, as well as PSORALEA. Furanocoumarin,Furanocoumarins,Furocoumarin,Psoralens,Angelicins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003720 Densitometry The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material. Densitometries
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005199 Fanconi Anemia Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id Anemia, Fanconi,Fanconi Hypoplastic Anemia,Fanconi Pancytopenia,Fanconi Panmyelopathy,Fanconi's Anemia,Anemia, Fanconi's,Anemias, Fanconi,Fanconi Anemias

Related Publications

M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
January 1983, Human genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
January 1987, Human genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
November 1987, Mutation research,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
July 1974, Nature,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
September 2005, Nature genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
June 1990, Cancer research,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
July 1974, Biochemical and biophysical research communications,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
January 1979, Biochimica et biophysica acta,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
January 1985, Somatic cell and molecular genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and B Hang, and D D Parrish
March 2010, Free radical biology & medicine,
Copied contents to your clipboard!