Organization of cutaneous primary afferent fibers projecting to the dorsal horn in the rat: WGA-HRP versus B-HRP. 1992

S Maslany, and D P Crockett, and M D Egger
Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854-5635.

Primary afferent projections from cutaneous afferents in the forelimb and hindlimb digits to the dorsal horn (DH) were examined using 4 tracers: (1) 25% free horseradish peroxidase (HRP), (2) 2.5% wheat-germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), (3) a mixture of 25% free HRP and 2.5% WGA-HRP (WGA-HRP/HRP) or (4) 0.1% HRP conjugated to cholera toxin (B-HRP). The tracer was injected intracutaneously into the digits. Three to 4 days later, the rats were perfused transcardially, transverse sections (60-microns thick) were cut and the HRP was reacted using the tetramethyl benzidine (TMB) method. The location of the label was reconstructed by camera lucida drawings. In rats which received an injection of HRP alone, no label was detected in the DH. Rats injected with WGA-HRP had projection patterns similar to those injected with WGA-HRP/HRP. Patterns of labelling with WGA-HRP differed markedly from those with B-HRP. WGA-HRP labelled cutaneous afferents projecting to Rexed's laminae I-III, with the densest label in lamina II; in contrast, B-HRP labelled cutaneous afferents projecting to laminae II-V, with the densest label in laminae III-IV. These results indicate that, for cutaneous primary afferents projecting to the DH, WGA-HRP and B-HRP labelled different subpopulations of fibers, with the B-HRP-labelled subpopulation biased toward afferents of larger diameter. Rostrocaudally, the extent of the densest fiber projections, whether labelled by WGA-HRP or by B-HRP, was essentially the same, but the extent of the less densely labelled projections was much greater with B-HRP than with WGA-HRP. Comparisons of the projection maps from each of the five digits, using either WGA-HRP or B-HRP, indicated that, as seen in transverse sections through the DH, there was extensive overlapping among the labelled cutaneous afferent fibers from adjacent, or even non-adjacent digits.

UI MeSH Term Description Entries
D008297 Male Males
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014909 Wheat Germ Agglutinins Lectins purified from the germinating seeds of common wheat (Triticum vulgare); these bind to certain carbohydrate moieties on cell surface glycoproteins and are used to identify certain cell populations and inhibit or promote some immunological or physiological activities. There are at least two isoforms of this lectin. Agglutinins, Wheat Germ,Lectins, Triticum Vulgare,Lectins, Wheat Germ,Triticum Vulgare Lectin,Triticum Vulgare Lectins,Wheat Germ Agglutinin,Wheat Germ Lectin,Wheat Germ Lectins,Wheat Germ Agglutinin Isolectin 1,Wheat Germ Agglutinin Isolectin 2,Agglutinin, Wheat Germ,Germ Agglutinin, Wheat,Germ Lectin, Wheat,Lectin, Triticum Vulgare,Lectin, Wheat Germ,Vulgare Lectin, Triticum

Related Publications

S Maslany, and D P Crockett, and M D Egger
March 2007, Anatomical science international,
S Maslany, and D P Crockett, and M D Egger
June 1991, The Journal of comparative neurology,
S Maslany, and D P Crockett, and M D Egger
November 1991, Brain research. Developmental brain research,
S Maslany, and D P Crockett, and M D Egger
February 1996, Progress in neurobiology,
S Maslany, and D P Crockett, and M D Egger
January 1975, The Journal of physiology,
S Maslany, and D P Crockett, and M D Egger
March 1991, The Journal of comparative neurology,
S Maslany, and D P Crockett, and M D Egger
March 1994, The Journal of comparative neurology,
S Maslany, and D P Crockett, and M D Egger
July 1985, The Journal of physiology,
S Maslany, and D P Crockett, and M D Egger
April 1983, The Journal of comparative neurology,
S Maslany, and D P Crockett, and M D Egger
June 1979, The Journal of comparative neurology,
Copied contents to your clipboard!