Regulation of vascular cell adhesion molecule 1 on human dermal microvascular endothelial cells. 1992

R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
Department of Dermatology, Emory University, Atlanta, GA 30322.

Vascular endothelial cell adhesion molecule 1 (VCAM-1) is an adherence molecule that is induced on endothelial cells by cytokine stimulation and can mediate binding of lymphocytes or tumor cells to endothelium. Because these interactions often occur at the level of the microvasculature, we have examined the regulation of expression of VCAM-1 in human dermal microvascular endothelial cells (HDMEC) and compared it to the regulation of VCAM-1 in large vessel human umbilical vein endothelial cells (HUVEC). Both cell populations were judged pure as assessed by expression of von Willebrand factor and uptake of acetylated low density lipoprotein. Expression of VCAM-1 was not detectable on either unstimulated HDMEC or HUVEC when assessed by ELISA or flow cytometry. Stimulation of either HDMEC or HUVEC with TNF-alpha resulted in a time- and dose-dependent induction of VCAM-1. However, although TNF-alpha-induced cell surface and mRNA expression of VCAM-1 in HDMEC was transient, peaking after 16 h of stimulation, TNF stimulation led to persistently elevated cell surface expression of VCAM-1 on HUVEC. IL-1 alpha also induced cell surface expression of VCAM-1 on HUVEC in a time- and dose-dependent manner, but stimulation of HDMEC with IL-1 alpha at doses up to 1000 U/ml failed to induce significant cell surface expression. However, IL-1 alpha induced time- and dose-dependent increases in ICAM-1 on HDMEC. Similarly, IL-4 induced VCAM-1 expression and augmented TNF-alpha-induced expression on HUVEC but did not affect VCAM-1 expression on HDMEC. Binding of Ramos cells to cytokine-stimulated endothelial cell monolayers correlated with VCAM-1 induction. Increased binding was seen after stimulation of HDMEC with TNF-alpha, which was blocked by anti-VCAM-1 mAb, but no increases in binding were noted after stimulation of HDMEC monolayers with IL-1 alpha. These data provide additional evidence for the existence of endothelial cell heterogeneity and differences in cell adhesion molecule regulation on endothelial cells derived from different vascular beds.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D019010 Vascular Cell Adhesion Molecule-1 Cytokine-induced cell adhesion molecule present on activated endothelial cells, tissue macrophages, dendritic cells, bone marrow fibroblasts, myoblasts, and myotubes. It is important for the recruitment of leukocytes to sites of inflammation. (From Pigott & Power, The Adhesion Molecule FactsBook, 1993, p154) Antigens, CD106,CD106 Antigens,VCAM-1,CD106 Antigen,INCAM-110,Inducible Cell Adhesion Molecule 110,Vascular Cell Adhesion Molecule,Antigen, CD106,Vascular Cell Adhesion Molecule 1

Related Publications

R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
November 2003, The Journal of investigative dermatology,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
August 1996, The Kobe journal of medical sciences,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
February 1997, The Journal of clinical investigation,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
September 1994, The British journal of dermatology,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
August 1994, Biochemical and biophysical research communications,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
February 1994, Circulation research,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
April 1996, Journal of immunology (Baltimore, Md. : 1950),
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
May 2001, Veterinary immunology and immunopathology,
R A Swerlick, and K H Lee, and L J Li, and N T Sepp, and S W Caughman, and T J Lawley
August 1991, The Journal of investigative dermatology,
Copied contents to your clipboard!