Effect of haloperidol on cyclic AMP and inositol trisphosphate in rat striatum in vivo. 1992

M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
Department of Neuropsychiatry, Fukushima Medical College, Japan.

To investigate the effect of haloperidol (HAL) on second messengers in the brain striatum, the concentrations of cAMP and inositol trisphosphate (IP-3) were measured in the striatum of rats in vivo after intravenous administration of HAL, and their concentrations were compared with the severity of catalepsy and changes in dopamine (DA) metabolism in the striatum. Catalepsy developed both in the animals treated with 5 mg/kg and those with 0.5 mg/kg of HAL, but it appeared earlier, and the period of severe catalepsy was longer in the former than in the latter. In the animals treated with 5 mg/kg of HAL, DOPAC and HVA began to increase at 20 min after administration, and their percent increases were correlated with the severity of catalepsy. In the 5 mg/kg animals, both cAMP and IP-3 increased. The IP-3 showed a delayed peak but a greater increase as compared with the cAMP. In the 0.5 mg/kg animals, only IP-3 increased. These findings suggest that HAL might affect not only the adenylate cyclase system but also the phosphoinositide response in the striatum. Moreover, the changes in the phosphoinositide response might be secondarily induced by the blocking of D-2 receptors by HAL.

UI MeSH Term Description Entries
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002375 Catalepsy A condition characterized by inactivity, decreased responsiveness to stimuli, and a tendency to maintain an immobile posture. The limbs tend to remain in whatever position they are placed (waxy flexibility). Catalepsy may be associated with PSYCHOTIC DISORDERS (e.g., SCHIZOPHRENIA, CATATONIC), nervous system drug toxicity, and other conditions. Cerea Flexibilitas,Flexibility, Waxy,Anochlesia,Anochlesias,Catalepsies,Flexibilitas, Cerea,Flexibilities, Waxy,Waxy Flexibilities,Waxy Flexibility
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D006719 Homovanillic Acid A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. 3-Methoxy-4-Hydroxyphenylacetic Acid,4-Hydroxy-3-Methoxyphenylacetic Acid,3 Methoxy 4 Hydroxyphenylacetic Acid,4 Hydroxy 3 Methoxyphenylacetic Acid,Acid, 3-Methoxy-4-Hydroxyphenylacetic,Acid, 4-Hydroxy-3-Methoxyphenylacetic,Acid, Homovanillic
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
April 1973, The Journal of pharmacy and pharmacology,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
March 1992, Biological psychiatry,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
March 1987, Journal of cell science,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
December 1989, British journal of pharmacology,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
October 1981, The Journal of cell biology,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
January 1985, Psychopharmacology,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
May 1987, Proceedings of the National Academy of Sciences of the United States of America,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
September 1995, Neuroscience letters,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
September 1989, Biochimica et biophysica acta,
M Kaneko, and K Sato, and R Horikoshi, and M Yaginuma, and N Yaginuma, and M Shiragata, and H Kumashiro
October 1997, Brain research,
Copied contents to your clipboard!