Activation of human plasminogen by equimolar levels of streptokinase. 1977

A P Bajaj, and F J Castellino

Native Glu-human plasminogen (Mr approximately 92,000 with NH2-terminal glutamic acid) is able to combine directly with streptokinase in an equivalent molar ratio, to yield a stoichiometric complex. The plasminogen moiety in the complex then undergoes streptokinase-induced conformational changes. As a result of such, an active center develops in the plasminogen moiety of the complex. This proteolytically active complex then activates plasminogen in the complex to plasmin and at least two peptide bonds are cleaved in the process. The data presented in this paper reveal that initially an internal peptide bond of plasminogen (in the complex) is cleaved to yield a two-chain, disulfide-linked plasmin molecule. The heavy chain (Mr approximately 67,000 with NH2-terminal glutamic acid) of this plasmin molecule has an identical NH2-terminal amico acid as the native plasminogen. The light chain (Mr approximately 25,000 with NH2-terminal valine) of plasmin is known to be derived from the COOH-terminal portion of the parent plasminogen molecule. A second peptide is then cleaved from the NH2-terminal end of the heavy chain of plasmin producing a proteolytically modified heavy chain (Mr =60.000 with NH2-terminal lysine). This cleavage of the NH2-terminal peptide from the heavy chain of plasmin is shown to be mediated by the dissociated free plasmin present in the activation mixture. Plasmin in the streptokinase-plasmin complex is unable to cleave this NH2-terminal peptide. This same NH2-terminal peptide can also be cleaved from native Glu-plasminogen or from the Glu-plasminogen-streptokinase complex by free plasmin and not by a complex of streptokinase-plasmin. From these studies we conclude (a) in the streptokinase-plasminogen complex, the NH2-terminal peptide need not be released prior to the cleavage of the essential Arg-Val peptide bond which leads to the formation of a two chain plasmin molecule and (b) that this peptide is cleaved from the native plasminogen or from the heavy chain of the initially formed plasmin in the streptokinase complex by free plasmin and not by the plasmin associated with streptokinase. In agreement with this, plasmin associated with streptokinase was unable to cleave the NH2-terminal peptide from the isolated native heavy chain possessing glutamic acid as the NH2-terminal amino acid; whereas free plasmin readily cleaved this peptide from the same isolated Glu-heavy chain.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013300 Streptokinase Streptococcal fibrinolysin . An enzyme produced by hemolytic streptococci. It hydrolyzes amide linkages and serves as an activator of plasminogen. It is used in thrombolytic therapy and is used also in mixtures with streptodornase (STREPTODORNASE AND STREPTOKINASE). EC 3.4.-. Avelizin,Awelysin,Celiase,Distreptase,Kabikinase,Kabivitrum,Streptase,Streptodecase

Related Publications

A P Bajaj, and F J Castellino
March 1969, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A P Bajaj, and F J Castellino
April 1955, The Journal of biological chemistry,
A P Bajaj, and F J Castellino
May 1971, Biochemical and biophysical research communications,
A P Bajaj, and F J Castellino
April 1964, Thrombosis et diathesis haemorrhagica,
A P Bajaj, and F J Castellino
February 1962, Report. Army Medical Research Laboratory (U.S.),
A P Bajaj, and F J Castellino
January 1965, The American journal of physiology,
A P Bajaj, and F J Castellino
October 1975, Biochemistry,
Copied contents to your clipboard!