Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. 1992

G A Ricaurte, and U D McCann
Department of Neurology, Johns Hopkins University School of Medicine, Francis Scott Key Medical Center, Baltimore, Maryland 21224.

A wealth of evidence has accrued over the last 20 years indicating that certain amphetamine analogues have the potential to damage central monoaminergic neurons. For example, amphetamine has been shown to be toxic to dopamine neurons, MDMA to serotonin neurons, and methamphetamine to both (Table 1). In rodents, the toxic effects of amphetamines appear to be limited to axon terminals, and regenerative sprouting tends to be the rule. By contrast, in primates, nerve cell bodies appear to be affected, and the deleterious effects of amphetamine derivatives tend to be longer lasting, and possibly permanent (Fig. 2). Although findings in animals are compelling, observations in humans are less clear. In particular, it remains to be determined whether amphetamine analogues damage central monoaminergic neurons in humans and, if they do, whether functional consequences ensue. Also, the mechanism by which amphetamines damage monoaminergic neurons remains to be defined. Further insight into these basic and clinical aspects of amphetamine neurotoxicity should enhance our understanding of central monoaminergic systems in normal brain function, and their role in the pathophysiology of neuropsychiatric disorders.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000662 Amphetamines Analogs or derivatives of AMPHETAMINE. Many are sympathomimetics and central nervous system stimulators causing excitation, vasopressin, bronchodilation, and to varying degrees, anorexia, analepsis, nasal decongestion, and some smooth muscle relaxation.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015104 3,4-Methylenedioxyamphetamine An amphetamine derivative that inhibits uptake of catecholamine neurotransmitters. It is a hallucinogen. It is less toxic than its methylated derivative but in sufficient doses may still destroy serotonergic neurons and has been used for that purpose experimentally. 3,4 Methylenedioxyamphetamine

Related Publications

G A Ricaurte, and U D McCann
January 1983, Progress in clinical and biological research,
G A Ricaurte, and U D McCann
May 1999, Progress in neuro-psychopharmacology & biological psychiatry,
G A Ricaurte, and U D McCann
December 1999, Ugeskrift for laeger,
G A Ricaurte, and U D McCann
January 2003, Reviews on environmental health,
G A Ricaurte, and U D McCann
March 1999, Neuroscience and biobehavioral reviews,
G A Ricaurte, and U D McCann
January 2006, Pharmacology & therapeutics,
G A Ricaurte, and U D McCann
January 2004, Aviation, space, and environmental medicine,
G A Ricaurte, and U D McCann
December 2014, Journal of neurophysiology,
G A Ricaurte, and U D McCann
September 2000, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!