Gonadotropin-releasing hormone-induced calcium signaling in clonal pituitary gonadotrophs. 1992

F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

In agonist-stimulated clonal pituitary gonadotrophs (alpha T3-1 cells), cytoplasmic calcium ([Ca2+]i) exhibited rapid and prominent peak increases, followed by lower, but sustained, elevations for up to 15 min. The [Ca2+]i response to GnRH was rapidly inhibited by prior addition of a potent GnRH antagonist. In the absence of extracellular Ca2+ the initial peak [Ca2+]i response was only slightly decreased, but the prolonged increase in [Ca2+]i was abolished, indicating that the peak is derived largely from intracellular calcium mobilization and the sustained phase from Ca2+ influx. Application of the endoplasmic reticulum Ca(2+)-ATPase blocker thapsigargin caused progressive and dose-dependent elevation of [Ca2+]i and decreased the peak amplitude of the GnRH-induced Ca2+ response. On the other hand, addition of dihydropyridine calcium channel antagonists before or after GnRH treatment prevented or terminated the plateau phase, respectively, consistent with entry of Ca2+ through L-type voltage-sensitive Ca2+ channels (VSCC) as the major Ca2+ influx pathway during GnRH action. The presence of L-type VSCC in alpha T3-1 cells was further indicated by the ability of elevated extracellular K+ levels and the dihydropyridine calcium channel agonist Bay K 8644 to elevate [Ca2+]i in an extracellular calcium-dependent manner. These actions of depolarization and Bay K 8644 were inhibited by nifedipine, with an IC50 of 10 nM. High extracellular K(+)- and GnRH-induced Ca2+ entry was also attenuated by phorbol esters and permeant diacylglycerols, indicating that protein kinase-C exerts inhibitory modulation of VSCC activity. In contrast to normal pituitary gonadotrophs, in which GnRH induces a frequency-modulated oscillatory [Ca2+]i response, single alpha T3-1 cells exhibited a nonoscillatory amplitude-modulated signal during agonist stimulation. The [Ca2+]i responses observed in alpha T3-1 gonadotrophs indicate that the immortalized cells retain functional GnRH receptors and their coupling to the Ca2+ signaling pathway. Ca2+ influx through L-type channels maintains the plateau phase of the [Ca2+]i response during agonist stimulation and is inhibited by activation of protein kinase-C.

UI MeSH Term Description Entries
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
August 1995, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
April 1996, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
May 1984, Archives of biochemistry and biophysics,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
March 2000, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
December 1992, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
February 1993, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
January 1982, Molecular and cellular endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
January 1983, Endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
January 2017, Frontiers in endocrinology,
F Merelli, and S S Stojilković, and T Iida, and L Z Krsmanovic, and L Zheng, and P L Mellon, and K J Catt
November 1996, Cell calcium,
Copied contents to your clipboard!