The RNA polymerase II elongation complex. Factor-dependent transcription elongation involves nascent RNA cleavage. 1992

D Reines, and P Ghanouni, and Q Q Li, and J Mote
Graduate Program in Biochemistry and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322.

Regulation of transcription elongation is an important mechanism in controlling eukaryotic gene expression. SII is an RNA polymerase II-binding protein that stimulates transcription elongation and also activates nascent transcript cleavage by RNA polymerase II in elongation complexes in vitro (Reines, D. (1992) J. Biol. Chem. 267, 3795-3800). Here we show that SII-dependent in vitro transcription through an arrest site in a human gene is preceded by nascent transcript cleavage. RNA cleavage appeared to be an obligatory step in the SII activation process. Recombinant SII activated cleavage while a truncated derivative lacking polymerase binding activity did not. Cleavage was not restricted to an elongation complex arrested at this particular site, showing that nascent RNA hydrolysis is a general property of RNA polymerase II elongation complexes. These data support a model whereby SII stimulates elongation via a ribonuclease activity of the elongation complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II

Related Publications

D Reines, and P Ghanouni, and Q Q Li, and J Mote
December 1993, The Journal of biological chemistry,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
January 1993, Cellular & molecular biology research,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
November 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
January 2003, Annual review of biochemistry,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
August 2021, Molecular cell,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
April 2003, Current opinion in genetics & development,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
November 2013, Chemical reviews,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
June 2017, Nature communications,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
January 2011, Proceedings of the National Academy of Sciences of the United States of America,
D Reines, and P Ghanouni, and Q Q Li, and J Mote
April 2011, The Journal of biological chemistry,
Copied contents to your clipboard!