Human neonatal fibroblasts in monolayer culture secrete a number of insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, which may alter paracrine or autocrine IGF activity. Studies in vitro have demonstrated that exogenous IGFBP-3 can both inhibit and potentiate IGF action in these cells; however, it is not known to what extent there is regulatory interaction between the IGFBPs. In this study we report that exogenous and endogenous IGFBP-3 inhibit production of an IGF inducible IGFBP. When analyzed by SDS-PAGE and [125I]IGF-II ligand blotting, human neonatal fibroblasts secrete IGFBP-3, an IGFBP of 29-31 kDa, and a 22-24 kDa IGFBP after treatment with 50 ng/ml IGF-I. When IGF-I treatment was carried out in the presence of increasing concentrations (50-1000 ng/ml) of pure human serum-derived IGFBP-3, there was a dose-dependent decrease in the 29-31 kDa protein. In the presence of excess (250 ng/ml) IGF-I, IGFBP-3 had approximately 20-fold reduced potency in inhibiting 29-31 kDa IGFBP. When endogenous production of IGFBP-3 was increased by treatment with transforming growth factor-beta 1 (TGF beta 1), there was complete inhibition of 29-31 kDa IGFBP, while at high IGF-I concentrations TGF beta 1 had 2 to 3-fold reduced potency. These results demonstrate that fibroblast IGFBP production can be altered by exogenous and endogenous IGFBP-3, and suggest the existence of regulatory interactions between fibroblast IGFBPs.