Tumor necrosis factor alpha in human long-term bone marrow cultures: distinct effects on nonadherent and adherent progenitors. 1992

E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
Department of Hematology, Faculté de médecine, Saint Antoine, Paris, France.

Although tumor necrosis factor alpha (TNF alpha) exerts a variety of activities on hematopoietic cells, suggesting it may have some potential therapeutic applications, its long-term effects on hematopoiesis are not well defined. Therefore, we took the advantage of long-term bone marrow cultures (LTBMCs) to evaluate the long-term role of TNF alpha on both the microenvironment and the hematopoietic progenitors. LTBMCs were inoculated with 100 U/ml of recombinant human TNF alpha (rhTNF alpha) either at the onset of the cultures (d0) or at day 21 (d21) when the adherent layer (AL) was already established. Then TNF alpha was added at each weekly medium change. The cellularity and the content of progenitors in both the nonadherent layer (NAL) and AL, the formation of the AL, and the presence of various cytokines in the supernatants were examined weekly. The data showed 1) a strong and durable inhibitory effect on total nonadherent cells; 2) a rapid and transient inhibition of NA progenitors, whereas adherent progenitors were lately affected; and 3) microenvironmental changes consisting of the disappearance of adipocytes and the secretion of high levels of interleukin 6. The results suggest that the inhibitory effects of TNF alpha on the NAL are in part counterbalanced by stromal modifications that in turn lead to a faster exhaustion of hematopoiesis.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming

Related Publications

E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
June 1984, Experimental hematology,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
January 1988, Blood cells,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
December 1990, Blood,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
January 1988, Hematologic pathology,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
July 1982, Problemy gematologii i perelivaniia krovi,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
May 1992, Leukemia,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
January 1988, Haematologia,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
July 1980, Blood,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
January 1995, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
E Khoury, and F M Lemoine, and C Baillou, and L Kobari, and J Deloux, and M Guigon, and A Najman
June 1991, Experimental hematology,
Copied contents to your clipboard!