Homologous recombination of adenovirus DNA in mammalian cells: enhanced recombination following UV-irradiation of the virus. 1992

A J Rainbow, and J E Castillo
Department of Biology, McMaster University, Hamilton, Ont., Canada.

We have used adenovirus as a molecular probe to examine the recombination of viral DNA following infection of mammalian cells. The technique gives a quantitative measure of homologous recombination between adenovirus type 2 (Ad2) and Ad5PyMTR3. Ad5PyMTR3 is an insertion mutant of Ad5 containing polyoma virus (Py) DNA inserted into a deleted E1 region of the Ad5 genome. Cells were coinfected with Ad2 and Ad5PyMTR3 and at an appropriate time after infection, viral DNA was extracted from the infected cells, digested with restriction endonuclease and electrophoresed through an agarose gel. Although Ad2 and Ad5 have more than 99% DNA homology, they differ sufficiently in their restriction endonuclease patterns, such that recombinant viral DNA molecules containing the Py insert could be detected and quantified by Southern blotting and hybridization to a radioactive Py DNA probe. Using this method we are able to detect and quantitate recombinant viral DNA molecules containing the Py insert which are present at frequencies down to at least 1 in 100. Recombination was detected in Chinese hamster ovary cells, monkey kidney cells, human HeLa cells, normal human fibroblasts and SV40 transformed human fibroblasts. In experiments using HeLa cells, the frequency of recombination between the Py insert on Ad5PyMTR3 and a number of unique restriction enzyme sites on Ad2 increased with the distance from the Py insert to the restriction site. Also in HeLa cells, recombination increased with increasing amounts of viral DNA synthesis and with increasing UV dose to the virus. UV-irradiation of both coinfecting viruses with 1500 J/m2 resulted in a more than 100-fold reduction in the amount of viral DNA synthesized and about a 3-fold increase in the frequency of recombination.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A J Rainbow, and J E Castillo
January 2006, Postepy biochemii,
A J Rainbow, and J E Castillo
January 2001, Postepy biochemii,
A J Rainbow, and J E Castillo
January 1984, Cold Spring Harbor symposia on quantitative biology,
A J Rainbow, and J E Castillo
January 1989, Annual review of genetics,
A J Rainbow, and J E Castillo
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
A J Rainbow, and J E Castillo
September 2007, Cancer research,
A J Rainbow, and J E Castillo
January 1985, Molecular & general genetics : MGG,
A J Rainbow, and J E Castillo
January 1989, Progress in nucleic acid research and molecular biology,
A J Rainbow, and J E Castillo
January 1992, Critical reviews in oncology/hematology,
Copied contents to your clipboard!