Activation of nonselective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. 1992

P Thorn, and O H Petersen
Medical Research Council Secretory Control Research Group, University of Liverpool, United Kingdom.

The activation of the nonselective cation channels in mouse pancreatic acinar cells has been assessed at low agonist concentrations using patch-clamp whole cell, cell-attached patch, and isolated inside-out patch recordings. Application of acetylcholine (ACh) (25-1,000 nM) and cholecystokinin (CCK) (2-10 pM) evoked oscillatory responses in both cation and chloride currents measured in whole cell experiments. In cell-attached patch experiments we demonstrate CCK and ACh evoked opening of single 25-pS cation channels in the basolateral membrane. Therefore, at least a component of the whole cell cation current is due to activation of cation channels in the basolateral acinar cell membrane. To further investigate the reported sensitivity of the cation channel to intracellular ATP and calcium we used excised inside-out patches. Micromolar Ca2+ concentrations were required for significant channel activation. Application of ATP and ADP to the intracellular surface of the patch blocked channel opening at concentrations between 0.2 and 4 mM. The nonmetabolizable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP, 0.2-2 mM), also effectively blocked channel opening. The subsequent removal of ATP caused a transient increase in channel activity not seen with the removal of ADP or AMP-PNP. Patches isolated into solutions containing 2 mM ATP showed channel activation at micromolar Ca2+ concentrations. Our results show that ATP has two separate effects. The continuous presence of the nucleotide is required for operation of the cation channels and this action seems to depend on ATP hydrolysis. ATP can also close the channel and this effect can be demonstrated in excised inside-out patches when ATP is added to the bath after a period of exposure to an ATP-free solution. This action does not require ATP hydrolysis. Under physiological conditions hormonal stimulation can open the nonselective cation channels and this can be explained by the rise in the intracellular free Ca2+ concentration.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin

Related Publications

P Thorn, and O H Petersen
January 1984, The Journal of membrane biology,
P Thorn, and O H Petersen
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
P Thorn, and O H Petersen
January 1993, EXS,
P Thorn, and O H Petersen
September 2000, Journal of physiology and biochemistry,
Copied contents to your clipboard!