Alterations in slow transport kinetics induced by estramustine phosphate, an agent binding to microtubule-associated proteins. 1992

Z Sahenk, and J R Mendell
Norman Allen Department of Neurology, Ohio State University, Columbus 43210.

Estramustine phosphate (EP) disassembles microtubules by binding to microtubule-associated proteins (MAPs) rather than tubulin. In this study, EP-induced alterations of MAP integrity caused a unique form of axonal atrophy in rats. Initially, EP-induced axonal atrophy occurred in both proximal and distal axons of the sciatic nerve, characterized by an increase in neurofilament packing density, associated with a decrease in axonal area. In chronic exposure, distal axonal atrophy was associated with decreased numbers of microtubules, while the neurofilament number remained unaltered for the myelin spiral length. Continued exposure caused enlargement of proximal axons associated with an increase in neurofilament content. Correlative slow transport studies done at two different times, 7 and 14 days after [35S] methionine injection showed that EP retards the transport of cytoskeletal proteins migrating with both components of slow transport (SCa and SCb). However, there was a differential effect on SCb which showed progressive slowing along the nerve while the rate of SCa stayed relatively constant. In this model, the early occurring distal axonal atrophy can best be explained by reduced cytoskeletal components, particularly those traveling in SCb. Later in the course of intoxication, a relatively constant rate of SCa permitted continuous transport of neurofilament triplets, accounting for unaltered numbers of neurofilaments in distal axons with increased packing density. This model of axonal atrophy is unique because spacing of neurofilaments, not numbers determined axon size. Furthermore, EP-induced dissociation of the SCa and SCb kinetics suggests that MAPs play a role in the orderly, cohesive migration of slow transport components, essential for the normal organization of cytoskeleton.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004961 Estramustine A nitrogen mustard linked to estradiol, usually as phosphate; used to treat prostatic neoplasms; also has radiation protective properties. Estramustinphosphate,Emcyt,Estracyt,Estramustin Phosphate,Estramustine Phosphate Sodium,Leo-275,NSC-89199,Leo 275,Leo275,NSC 89199,NSC89199,Phosphate Sodium, Estramustine,Phosphate, Estramustin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic

Related Publications

Z Sahenk, and J R Mendell
January 1986, Annals of the New York Academy of Sciences,
Z Sahenk, and J R Mendell
January 1985, FEBS letters,
Z Sahenk, and J R Mendell
December 1994, The Plant cell,
Z Sahenk, and J R Mendell
July 2015, Nature cell biology,
Z Sahenk, and J R Mendell
August 2018, Physical review. E,
Copied contents to your clipboard!